ﻻ يوجد ملخص باللغة العربية
This paper considers the problem of estimating probabilities of the form $mathbb{P}(Y leq w)$, for a given value of $w$, in the situation that a sample of i.i.d. observations $X_1, ldots, X_n$ of $X$ is available, and where we explicitly know a functional relation between the Laplace transforms of the non-negative random variables $X$ and $Y$. A plug-in estimator is constructed by calculating the Laplace transform of the empirical distribution of the sample $X_1, ldots, X_n$, applying the functional relation to it, and then (if possible) inverting the resulting Laplace transform and evaluating it in $w$. We show, under mild regularity conditions, that the resulting estimator is weakly consistent and has expected absolute estimation error $O(n^{-1/2} log(n+1))$. We illustrate our results by two examples: in the first we estimate the distribution of the workload in an M/G/1 queue from observations of the input in fixed time intervals, and in the second we identify the distribution of the increments when observing a compound Poisson process at equidistant points in time (usually referred to as `decompounding).
We consider a pseudo-marginal Metropolis--Hastings kernel $P_m$ that is constructed using an average of $m$ exchangeable random variables, as well as an analogous kernel $P_s$ that averages $s<m$ of these same random variables. Using an embedding tec
For a skew normal random sequence, convergence rates of the distribution of its partial maximum to the Gumbel extreme value distribution are derived. The asymptotic expansion of the distribution of the normalized maximum is given under an optimal cho
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we s
Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression
A robust estimator is proposed for the parameters that characterize the linear regression problem. It is based on the notion of shrinkages, often used in Finance and previously studied for outlier detection in multivariate data. A thorough simulation