ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the Alfvenic Nature of the Interstellar Medium: Velocity Anisotropy Revisited

127   0   0.0 ( 0 )
 نشر من قبل Blakesley Burkhart
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of the interstellar medium (ISM) are strongly affected by turbulence, which shows increased anisotropy in the presence of a magnetic field. We expand upon the Esquivel & Lazarian method to estimate the Alfven Mach number using the structure function anisotropy in velocity centroid data from position-position-velocity maps. We utilize 3D magnetohydrodynamic (MHD) simulations of fully developed turbulence, with a large range of sonic and Alfvenic Mach numbers, to produce synthetic observations of velocity centroids with observational characteristics such as thermal broadening, cloud boundaries, noise, and radiative transfer effects of carbon monoxide. In addition, we investigate how the resulting anisotropy-Alfven Mach number dependency found in Esquivel & Lazarian (2011) might change when taking the second moment of the position-position-velocity cube or when using different expressions to calculate the velocity centroids. We find that the degree of anisotropy is related primarily to the magnetic field strength (i.e. Alfven Mach number) and the line-of-sight orientation, with a secondary effect on sonic Mach number. If the line-of-sight is parallel to up to ~45 deg off of the mean field direction, the velocity centroid anisotropy is not prominent enough to distinguish different Alfvenic regimes. The observed anisotropy is not strongly affected by including radiative transfer, although future studies should include additional tests for opacity effects. These results open up the possibility of studying the magnetic nature of the ISM using statistical methods in addition to existing observational techniques.



قيم البحث

اقرأ أيضاً

We use a set of magnetohydrodynamics (MHD) simulations of fully-developed (driven) turbulence to study the anisotropy in the velocity field that is induced by the presence of the magnetic field. In our models we study turbulence characterized by soni c Mach numbers M_s from 0.7 to 7.5, and Alfven Mach numbers M_A from 0.4 to 7.7. These are used to produce synthetic observations (centroid maps) that are analyzed. To study the effect of large scale density fluctuations and of white noise we have modified the density fields and obtained new centroid maps, which are analyzed. We show that restricting the range of scales at which the anisotropy is measured makes the method robust against such fluctuations. We show that the anisotropy in the structure function of the maps reveals the direction of the magnetic field for M_A lesssim 1.5, regardless of the sonic Mach number. We found that the degree of anisotropy can be used to determine the degree of magnetization (i.e. M_A) for M_A lesssim 1.5. To do this, one needs an additional measure of the sonic Mach number and an estimate of the LOS magnetic field, both feasible by other techniques, offering a new opportunity to study the magnetization state of the interstellar medium.
The density structure of the interstellar medium (ISM) determines where stars form and release energy, momentum, and heavy elements, driving galaxy evolution. Density variations are seeded and amplified by gas motion, but the exact nature of this mot ion is unknown across spatial scale and galactic environment. Although dense star-forming gas likely emerges from a combination of instabilities, convergent flows, and turbulence, establishing the precise origin is challenging because it requires quantifying gas motion over many orders of magnitude in spatial scale. Here we measure the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span an unprecedented spatial dynamic range ($10^{-1}{-}10^3$ pc). We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from $0.3{-}400$ pc. These flows are coupled to regularly-spaced density enhancements that likely form via gravitational instabilities. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows. Our results demonstrate that ISM structure cannot be considered in isolation. Instead, its formation and evolution is controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
We study the structure of spatially resolved, line-of-sight velocity dispersion for galaxies in the Epoch of Reionization (EoR) traced by [CII] $158murm{m}$ line emission. Our laboratory is a simulated prototypical Lyman-break galaxy, Freesia, part o f the SERRA suite. The analysis encompasses the redshift range 6 < z < 8, when Freesia is in a very active assembling phase. We build velocity dispersion maps for three dynamically distinct evolutionary stages (Spiral Disk at z=7.4, Merger at z=8.0, and Disturbed Disk at z=6.5) using [CII] hyperspectral data cubes. We find that, at a high spatial resolution of 0.005 ($simeq 30 pc$), the luminosity-weighted average velocity dispersion is $sigma_{rm{CII}}$~23-38 km/s with the highest value belonging to the highly-structured Disturbed Disk stage. Low resolution observations tend to overestimate $sigma_{rm CII}$ values due to beam smearing effects that depend on the specific galaxy structure. For an angular resolution of 0.02 (0.1), the average velocity dispersion is 16-34% (52-115%) larger than the actual one. The [CII] emitting gas in Freesia has a Toomre parameter $mathcal{Q}$~0.2 and a rotational-to-dispersion ratio of $v_{rm c}/sigma$~ 7 similar to that observed in z=2-3 galaxies. The primary energy source for the velocity dispersion is due to gravitational processes, such as merging/accretion events; energy input from stellar feedback is generally subdominant (< 10%). Finally, we find that the resolved $sigma_{rm{CII}} - {Sigma}_{rm SFR}$ relation is relatively flat for $0.02<{Sigma}_{rm SFR}/{{rm M}_{odot}} mathrm{yr}^{-1} {mathrm kpc}^{-2} < 30$, with the majority of data lying on the derived analytical relation $sigma propto Sigma_{rm SFR}^{5/7}$. At high SFR, the increased contribution from stellar feedback steepens the relation, and $sigma_{rm{CII}}$ rises slightly.
C$^+$ is a critical constituent of many regions of the interstellar medium, as it can be a major reservoir of carbon and, under a wide range of conditions, the dominant gas coolant. Emission from its 158$mu$m fine structure line is used to trace the structure of photon dominated regions in the Milky Way and is often employed as a measure of the star formation rate in external galaxies. Under most conditions, the emission from the single [CII] line is proportional to the collisional excitation rate coefficient. We here used improved calculations of the deexcitation rate of [CII] by collisions with H$_2$ to calculate more accurate expressions for interstellar C$^+$ fine structure emission, its critical density, and its cooling rate. The collision rates in the new quantum calculation are $sim$ 25% larger than those previously available, and narrow the difference between rates for excitation by atomic and molecular hydrogen. This results in [CII] excitation being quasi-independent of the molecular fraction and thus dependent only on the total hydrogen particle density. A convenient expression for the cooling rate at temperatures between 20 K and 400 K, assuming an LTE H$_2$ ortho to para ration is $Lambda ({rm LTE~OPR}) = left(11.5 + 4.0,e^{-100,mathrm K/T^{rm kin}}right);e^{-91.25,mathrm K/T^{rm kin}},n ({rm C}^{+}),n({rm H}_2)times 10^{-24};{rm ergs}~{rm cm}^{-3}~{rm s}^{-1}$. The present work should allow more accurate and convenient analysis of the [CII] line emission and its cooling.
We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (HI) in disc galaxies. For our analysis, we carry out $sim 4.6$pc resolution $N$-body+adaptive mesh refinement (AMR) hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way (MW), and a Large and Small Magellanic Cloud (LMC, SMC). We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed HI in local spiral galaxies from THINGS (The HI Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS HI density power spectra. We find that kinetic energy power spectra in feedback regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with super-sonic turbulence ($E(k)propto k^{-2}$) on scales below the thickness of the HI layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا