ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged Pion Production in $ u_mu$ Interactions on Hydrocarbon at $langle E_{ u}rangle$= 4.0 GeV

113   0   0.0 ( 0 )
 نشر من قبل Brandon Eberly
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Charged pion production via charged current $ u_{mu}$ interactions on plastic (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W $<$ 1.4 GeV are selected to isolate single pion production, which is expected to occur primarily through the $Delta(1232)$ resonance. Cross sections as functions of pion production angle and kinetic energy are reported and compared to predictions from different theoretical calculations and generator-based models, for neutrinos ranging in energy from 1.5 GeV to 10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. These measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.



قيم البحث

اقرأ أيضاً

162 - T. Le , J.L. Palomino , L. Aliaga 2015
Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process c onstrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $bar{ u}_e$ appearance oscillation experiments. The differential cross sections for $pi^0$ momentum and production angle, for events with a single observed $pi^0$ and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the $pi^0$ kinematics for this process.
MINERvA reports inclusive charged-current cross sections for muon neutrinos on hydrocarbon in the NuMI beamline. We measured the double-differential cross section in terms of the longitudinal and transverse muon momenta, as well as the single-differe ntial cross sections in those variables. The data used in this analysis correspond to an exposure of $3.34 times 10^{20}$ protons on target with a peak neutrino energy of approximately 3.5 GeV. Measurements are compared to the GENIE, NuWro and GiBUU neutrino cross-section predictions, as well as a version of GENIE modified to produce better agreement with prior exclusive MINERvA measurements. None of the models or variants were able to successfully reproduce the data across the entire phase space, which includes areas dominated by each interaction channel.
A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon and a proton and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70$^{circ}$ and proton kinetic energies greater than 110 MeV. The extracted cross section, when based completely on hadronic kinematics, is well-described by a simple relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multi-nucleon correlations. This measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.
The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-in tegrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $ u_{e}$ with that of similarly-selected $ u_{mu}$-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current $ u_{e}$ interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well-described by the predictions of the neutrino event generator GENIE.
73 - A. Ghosh , B. Yaeggy , R.Galindo 2021
This paper presents a novel neutral-pion reconstruction that takes advantage of the machine learning technique of semantic segmentation using MINERvA data collected between 2013-2017, with an average neutrino energy of $6$ GeV. Semantic segmentation improves the purity of neutral pion reconstruction from two gammas from 71% to 89% and improves the efficiency of the reconstruction by approximately 40%. We demonstrate our method in a charged current neutral pion production analysis where a single neutral pion is reconstructed. This technique is applicable to modern tracking calorimeters, such as the new generation of liquid-argon time projection chambers, exposed to neutrino beams with $langle E_ u rangle$ between 1-10 GeV. In such experiments it can facilitate the identification of ionization hits which are associated with electromagnetic showers, thereby enabling improved reconstruction of charged-current $ u_e$ events arising from $ u_{mu} rightarrow u_{e}$ appearance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا