ﻻ يوجد ملخص باللغة العربية
We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device (SQUID). We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 {mu}s when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.
We present a superconducting qubit for the circuit quantum electrodynamics architecture that has a tunable coupling strength g. We show that this coupling strength can be tuned from zero to values that are comparable with other superconducting qubits
We numerically and experimentally investigate the phononic loss for superconducting resonators fabricated on a piezoelectric substrate. With the help of finite element method simulations, we calculate the energy loss due to electromechanical conversi
The loss and noise mechanisms of superconducting resonators are useful tools for understanding decoherence in superconducting circuits. While the loss mechanisms have been heavily studied, noise in superconducting resonators has only recently been in
We present a method to measure the absolute surface resistance of conductive samples at a set of GHz frequencies with superconducting lead stripline resonators at temperatures 1- 6K. The stripline structure can easily be applied for bulk samples and
We present an experimental demonstration as well as a theoretical model of an integrated circuit designed for the manipulation of a microwave field down to the single-photon level. The device is made of a superconducting resonator coupled to a transm