ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak perturbations of the p-Laplacian

164   0   0.0 ( 0 )
 نشر من قبل Hynek Kovarik
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the p-Laplacian in R^d perturbed by a weakly coupled potential. We calculate the asymptotic expansions of the lowest eigenvalue of such an operator in the weak coupling limit separately for p>d and p=d and discuss the connection with Sobolev interpolation inequalities.



قيم البحث

اقرأ أيضاً

71 - Weirun Tao , Yuxiang Li 2018
This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion begin{eqnarray} left{begin{array}{lll} n_t+ucdot abla n= ablacdot(| abla n|^{p-2} abla n)- ablacdot(nchi(c) abla c),& xinOmega, t>0, c_t+ucdot abla c=Delta c-nf(c),& xinOmega, t>0, u_t+(ucdot abla) u=Delta u+ abla P+n ablaPhi,& xinOmega, t>0, ablacdot u=0,& xinOmega, t>0 end{array}right. end{eqnarray} under homogeneous boundary conditions of Neumann type for $n$ and $c$, and of Dirichlet type for $u$ in a bounded convex domain $Omegasubset mathbb{R}^3$ with smooth boundary. Here, $Phiin W^{1,infty}(Omega)$, $0<chiin C^2([0,infty))$ and $0leq fin C^1([0,infty))$ with $f(0)=0$. It is proved that if $p>frac{32}{15}$ and under appropriate structural assumptions on $f$ and $chi$, for all sufficiently smooth initial data $(n_0,c_0,u_0)$ the model possesses at least one global weak solution.
In this paper we prove uniform convergence of approximations to $p$-harmonic functions by using natural $p$-mean operators on bounded domains of the Heisenberg group $mathbb{H}$ which satisfy an intrinsic exterior corkscrew condition. These domains include Euclidean $C^{1,1}$ domains.
We obtain asymptotic estimates for the eigenvalues of the p(x)-Laplacian defined consistently with a homogeneous notion of first eigenvalue recently introduced in the literature.
We consider the Dirichlet problem for the nonlinear $p(x)$-Laplacian equation. For axially symmetric domains we prove that, under suitable assumptions, there exist Mountain-pass solutions which exhibit partial symmetry. Furthermore, we show that Semi -stable or non-degenerate smooth solutions need to be radially symmetric in the ball.
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, with a logistic type reaction depending on a positive parameter. In the subdiffusive and equidiffusive cases, we prove existence and uniqueness of the positive solution when the parameter lies in convenient intervals. In the superdiffusive case, we establish a bifurcation result. A new strong comparison result, of independent interest, plays a crucial role in the proof of such bifurcation result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا