ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniqueness of Rankin-Selberg periods

181   0   0.0 ( 0 )
 نشر من قبل Binyong Sun
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $k$ be a local field of characteristic zero. Rankin-Selbergs local zeta integrals produce linear functionals on generic irreducible admissible smooth representations of $GL_n(k)times GL_r(k)$, with certain invariance properties. We show that up to scalar multiplication, these linear functionals are determined by the invariance properties.



قيم البحث

اقرأ أيضاً

We prove that the local Rankin--Selberg integrals for principal series representations of the general linear groups agree with certain simple integrals over the Rankin--Selberg subgroups, up to certain constants given by the local gamma factors.
In this article, we study the Beilinson-Bloch-Kato conjecture for motives corresponding to the Rankin-Selberg product of conjugate self-dual automorphic representations, within the framework of the Gan-Gross-Prasad conjecture. We show that if the cen tral critical value of the Rankin-Selberg $L$-function does not vanish, then the Bloch-Kato Selmer group with coefficients in a favorable field of the corresponding motive vanishes. We also show that if the class in the Bloch-Kato Selmer group constructed from certain diagonal cycle does not vanish, which is conjecturally equivalent to the nonvanishing of the central critical first derivative of the Rankin-Selberg $L$-function, then the Bloch-Kato Selmer group is of rank one.
We prove the Archimedean period relations for Rankin-Selberg convolutions for $mathrm{GL}(n)times mathrm{GL}(n-1)$. This implies the period relations for critical values of the Rankin-Selberg L-functions for $mathrm{GL}(n)times mathrm{GL}(n-1)$.
Let $mathsf k$ be a local field. Let $I_ u$ and $I_{ u}$ be smooth principal series representations of $mathrm{GL}_n(mathsf k)$ and $mathrm{GL}_{n-1}(mathsf k)$ respectively. The Rankin-Selberg integrals yield a continuous bilinear map $I_ utimes I_{ u}rightarrow mathbb C$ with a certain invariance property. We study integrals over a certain open orbit that also yield a continuous bilinear map $I_ utimes I_{ u}rightarrow mathbb C$ with the same invariance property, and show that these integrals equal the Rankin-Selberg integrals up to an explicit constant. Similar results are also obtained for Rankin-Selberg integrals for $mathrm{GL}_n(mathsf k)times mathrm{GL}_n(mathsf k)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا