ترغب بنشر مسار تعليمي؟ اضغط هنا

Passive Magnetic Shielding in Gradient Fields

348   0   0.0 ( 0 )
 نشر من قبل Chris Bidinosti
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost magnetic shielding layer. Overall this work provides a comprehensive framework needed to analyze and optimize dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.



قيم البحث

اقرأ أيضاً

The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The dete ction of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.
Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets se vere requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6E-4% due to thermal expansion although they consume an average power of 22 W. Also Earths magnetic field has to be suppressed by a factor of 10E5. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.
This paper describes the characterization studies under low magnetic fields of the Hamamatsu R7081 photomultipliers that are being used in the Double Chooz experiment. The design and performances of the magnetic shielding that has been developed for these photomultipliers are also reported.
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutrons electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
The motivation of this paper is to explore the parameters that affect the performance of Microchannel Plate Photomultiplier Tubes (MCP-PMTs) in magnetic fields with the goal to guide their design to achieve a high magnetic field tolerance. MCP-PMTs b ased on two different designs were tested.The magnetic field tolerance of MCP-PMT based on a design providing independently biased voltages showed a significant improvement (up to 0.7 T) compared to the one utilizing an internal resistor chain design (up to 0.1 T), indicating the importance of individually adjustable voltages. The effects of the rotation angle of the MCP-PMT relative to the magnetic field direction and of the bias voltage between the photocathode and the top MCP were extensively investigated using the MCP-PMT based on the independently biased voltage design. It was found that the signal amplitude of the MCP-PMT exhibits an enhanced performance at a tilt angle of $pm$8$^{circ}$, due to the 8$^{circ}$ bias angle of the MCP pores. The maximum signal amplitude was observed at different bias voltages depending on the magnetic field strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا