ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanics and cooling system for the camera of the Large Size Telescopes of the Cherenkov Telescope Array (CTA)

110   0   0.0 ( 0 )
 نشر من قبل Carlos Delgado
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mechanics of the camera for the large size telescopes of CTA must protect and provide a stable environment for its instrumentation. This is achieved by a stiff support structure enclosed in an air and water tight volume. The structure is specially devised to facilitate extracting the power dissipated by the focal plane electronics while keeping its weight small enough to guarantee an optimum load on the telescope structure. A heat extraction system is designed to keep the electronics temperature within its optimal operation range, stable in time and homogeneous along the camera volume, whereas it is decoupled from the temperature in the telescope environment. In this contribution, we present the details of this system as well as its verification based in finite element analysis computations and tested prototypes. Finally, issues related to the integration of the camera mechanics and electronics will be dealt with.



قيم البحث

اقرأ أيضاً

The pointing system of the prototype of the Large Size Telescope (LST-1) for the Cherenkov Telescope Array observatory, should ensure mapping of the gamma-ray image of a point-like source in the Cherenkov camera to the sky coordinates with a precisio n better than 14 arcseconds. Detailed studies of the telescope deformations are performed in order to disentangle different deformations and quantify their contributions to the miss-pointing, to learn how to correct for them, and finally how to design the system for offline and online pointing corrections. The LST-1 pointing precision system consist of several devices mounted at the center of the dish: Starguider Camera (SG), Camera Displacement Monitor (CDM), two inclinometers, four distance meters, and an Optical Axis Reference Laser (OARL), working together with the LEDs mounted in a circle around the Cherenkov camera. The online pointing corrections are based on a bending model as currently done by existing IACTs. The offline corrections will be performed combining measurements done by the SG and CDM cameras. SG will provide the position of the Cherenkov camera center with respect to the sky coordinates with a precision of 5 arcseconds, while CDM will provide the deviation of the telescope optical axis defined by the OARL spots with respect to the Cherenkov camera center with a precision better than 5 arcseconds. Laboratory measurements on dedicated test benches showed that the required pointing precision can be achieved for SG, CDM and inclinometer.
NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sa mpling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electronics, read-out, clock distribution, slow control, data-acquisition, triggering, monitoring and services.
The design of the camera support structures for the Cherenkov Telescope Array (CTA) Large Size Telescopes (LSTs) is based on an elliptical arch geometry reinforced along its orthogonal projection by two symmetric sets of stabilizing ropes. The main r equirements in terms of minimal camera displacement, minimal weight, minimal shadowing on the telescope mirror, maximal strength of the structures and fast dynamical stabilization have led to the application of Carbon Fibre Plastic Reinforced (CFPR) technologies. This work presents the design, static and dynamic performance of the telescope fulfilling critical specifications for the major scientific objectives of the CTA LST, e.g. Gamma Ray Burst detection.
The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmen ted in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m$^2$. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of $sim$94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical axis reference laser on the target of the telescope camera. The two actuators and the universal joint of each mirror facet are respectively fixed to three neighboring joints of the dish space frame, via specially designed interface plate.
85 - T. Saito , C. Delgado , O. Blanch 2021
The first Large Size Telescope (LST-1) of the Cherenkov Telescope Array has been operational since October 2018 at La Palma, Spain. We report on the results obtained during the camera commissioning. The noise level of the readout is determined as a 0 .2 p.e. level. The gain of PMTs are well equalized within 2% variation, using the calibration flash system. The effect of the night sky background on the signal readout noise as well as the PMT gain estimation are also well evaluated. Trigger thresholds are optimized for the lowest possible gamma-ray energy threshold and the trigger distribution synchronization has been achieved within 1~ns precision. Automatic rate control realizes the stable observation with 1.5% rate variation over 3 hours. The performance of the novel DAQ system demonstrates a less than 10% dead time for 15 kHz trigger rate even with sophisticated online data correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا