ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-infrared Spectral Properties of Post-Starburst Quasars

150   0   0.0 ( 0 )
 نشر من قبل Wei Peng
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Spitzer InfraRed Spectrograph (IRS) low-resolution spectra of 16 spectroscopically selected post-starburst quasars (PSQs) at z ~ 0.3. The optical spectra of these broad-lined active galactic nuclei (AGNs) simultaneously show spectral signatures of massive intermediate-aged stellar populations making them good candidates for studying the connections between AGNs and their hosts. The resulting spectra show relatively strong polycyclic aromatic hydrocarbon (PAH) emission features at 6.2 and 11.3micron and a very weak silicate feature, indicative of ongoing star formation and low dust obscuration levels for the AGNs. We find that the mid-infrared composite spectrum of PSQs has spectral properties between ULIRGs and QSOs, suggesting that PSQs are hybrid AGN and starburst systems as also seen in their optical spectra. We also find that PSQs in early-type host galaxies tend to have relatively strong AGN activities, while those in spiral hosts have stronger PAH emission, indicating more star formation.



قيم البحث

اقرأ أيضاً

244 - D. Farrah 2010
We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with the Spitzer space telescope. The spectra span a range of shapes, from hot dust dominated AGN with silicate emission at 9.7 microns, to moderately obscured starbursts with stro ng Polycyclic Aromatic Hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate of order 2700 solar masses per year. With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (a) a merger driven starburst is ending, (b) a luminous AGN is in the last stages of burning through its surrounding dust, and (c) which we may be viewing over a restricted line of sight range.
We present optical spectroscopy of a sample of 38 post-starburst quasars (PSQs) at z ~ 0.3, 29 of which have morphological classifications based on Hubble Space Telescope imaging. These broad-lined active galactic nuclei (AGNs) possess the spectral s ignatures of massive intermediate-aged stellar populations making them potentially useful for studying connections between nuclear activity and host galaxy evolution. We model the spectra in order to determine the ages and masses of the host stellar populations, and the black hole masses and Eddington fractions of the AGNs. Our model components include an instantaneous starburst, a power-law, and emission lines. We find the PSQs have MBH ~ 10^8 Msun accreting at a few percent of Eddington luminosity and host ~ 10^10.5 Msun stellar populations which are several hundred Myr to a few Gyr old. We investigate relationships among these derived properties, spectral properties, and morphologies. We find that PSQs hosted in spiral galaxies have significantly weaker AGN luminosities, older starburst ages, and narrow emission-line ratios diagnostic of ongoing star-formation when compared to their early-type counterparts. We conclude that the early-type PSQs are likely the result of major mergers and were likely luminous infrared galaxies in the past, while spiral PSQs with more complex star-formation histories are triggered by less dramatic events (e.g., harassment, bars). We provide diagnostics to distinguish the early-type and spiral hosts when high spatial resolution imaging is not available.
145 - Mark Lacy 2012
We present preliminary results on fitting of SEDs to 142 z>1 quasars selected in the mid-infrared. Our quasar selection finds objects ranging in extinction from highly obscured, type-2 quasars, through more lightly reddened type-1 quasars and normal type-1s. We find a weak tendency for the objects with the highest far-infrared emission to be obscured quasars, but no bulk systematic offset between the far-infrared properties of dusty and normal quasars as might be expected in the most naive evolutionary schemes. The hosts of the type-2 quasars have stellar masses comparable to those of radio galaxies at similar redshifts. Many of the type-1s, and possibly one of the type-2s require a very hot dust component in addition to the normal torus emission.
We present an atlas of Spitzer/IRS high resolution (R~600) 10-37um spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons. Six out of the eight objects with a known AGN component show emission of the high excitation [NeV] line. This line is also seen in one other object (NGC4194) with, a priori, no known AGN component. In addition to strong polycyclic aromatic hydrocarbon emission features in this wavelength range (11.3, 12.7, 16.4um), the spectra reveal other weak hydrocarbon features at 10.6, 13.5, 14.2um, and a previously unreported emission feature at 10.75um. An unidentified absorption feature at 13.7um is detected in many of the starbursts. We use the fine-structure lines to derive the abundance of neon and sulfur for 14 objects where the HI 7-6 line is detected. We further use the molecular hydrogen lines to sample the properties of the warm molecular gas. Several basic diagrams characterizing the properties of the sample are also shown. We have combined the spectra of all the pure starburst objects to create a high S/N template, which is available to the community.
We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 <= z <= 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame ~0.1-5 mum spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line-of-sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR bump, characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا