ترغب بنشر مسار تعليمي؟ اضغط هنا

Dzyaloshinsky-Moriya driven helical-butterfly structure in Ba3NbFe3Si2O14

108   0   0.0 ( 0 )
 نشر من قبل Valerio Scagnoli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used soft x-ray magnetic diffraction at the Fe3+ L2,3 edges to examine to what extent the Dzyaloshinsky-Moriya interaction in Ba3NbFe3Si2O14 influences its low temperature magnetic structure. A modulated component of the moments along the c-axis is present, adding to the previously proposed helical magnetic configuration of co-planar moments in the a,b-plane. This leads to a helical-butterfly structure and suggests that both the multi-axial in-plane and the uniform out-of-plane Dzyaloshinsky-Moriya vectors are relevant. A non zero orbital magnetic signal is also observed at the oxygen K edge, which reflects the surprisingly strong hybridization between iron 3d and oxygen 2p states, given the nominal spherical symmetry of the Fe3+ half filled shell.



قيم البحث

اقرأ أيضاً

We have investigated the spin fluctuations in the langasite compound Ba3NbFe3Si2O14 in both the ordered state and as a function of temperature. The low temperature magnetic structure is defined by a spiral phase characterized by magnetic Bragg peaks at q=(0,0,tau ~ 1/7) onset at TN=27 K as previously reported by Marty et al. The nature of the fluctuations and temperature dependence of the order parameter is consistent with a classical second order phase transition for a two dimensional triangular antiferromagnet. We will show that the physical properties and energy scales including the ordering wavevector, Curie-Weiss temperature, and the spin-waves can be explained through the use of only symmetric exchange constants without the need for the Dzyaloshinskii-Moriya interaction. This is accomplished through a set of ``helical exchange pathways along the c direction imposed by the chiral crystal structure and naturally explains the magnetic diffuse scattering which displays a strong vector chirality up to high temperatures well above the ordering temperature. This illustrates a strong coupling between magnetic and crystalline chirality in this compound.
The Cu spin magnetism in La2-x-yEuySrxCuO4 (x<=0.17; y<=0.2) has been studied by means of magnetization measurements up to 14 T. Our results clearly show that in the antiferromagnetic phase Dzyaloshinsky-Moriya (DM)superexchange causes Cu spin cantin g not only in the LTO phase but also in the LTLO and LTT phases. In La1.8Eu0.2CuO4 the canted DM-moment is about 50% larger than in pure La2CuO4 which we attribute to the larger octahedral tilt angle. We also find clear evidence that the size of the DM-moment does not change significantly at the structural transition at T_LT from LTO to LTLO and LTT. The most important change induced by the transition is a significant reduction of the magnetic coupling between the CuO2 planes. As a consequence, the spin-flip transition of the canted Cu spins which is observed in the LTO phase for magnetic field perpendicular to the CuO2 planes disappears in the LTT phase. The shape of the magnetization curves changes from the well known spin-flip type to a weak-ferromagnet type. However, no spontaneous weak ferromagnetism is observed even at very low temperatures, which seems to indicate that the interlayer decoupling in our samples is not perfect. Nonetheless, a small fraction (<15%) of the DM-moments can be remanently magnetized throughout the entire antiferromagnetically ordered LTT/LTLO phase, i.e. for T<T_LT and x<0.02. It appears that the remanent DM-moment is perpendicular to the CuO2 planes. For magnetic field parallel to the CuO2 planes we find that the critical field of the spin-flop transition decreases in the LTLO phase, which might indicate a competition between different in-plane anisotropies. To study the Cu spin magnetism in La2-x-yEuySrxCuO4, a careful analysis of the Van Vleck paramagnetism of the Eu3+ ions was performed.
94 - N. Shibata , K. Ueda 2001
Thermodynamic properties of the S=1/2 Heisenberg chain in transverse staggered magnetic field H^y_s and uniform magnetic field H^x perpendicular to the staggered field is studied by the finite-temperature density-matrix renormalization-group method. The uniform and staggered magnetization and specific heat are calculated from zero temperature to high temperatures up to T/J=4 under various strength of magnetic fields from H^y_s/J, H^x/J=0 to 2.4. The specific heat and magnetization of the effective Hamiltonian of the Yb_4As_3 are also presented, and field induced gap formation and diverging magnetic susceptibility at low temperature are shown.
We investigate the effects of Dzyaloshinsky-Moriya (DM) interactions on the frustrated $J_1$-$J_2$ kagome-Heisenberg model using the pseudo-fermion functional-renormalization-group (PFFRG) technique. In order to treat the off-diagonal nature of DM in teractions, we develop an extended PFFRG scheme. We benchmark this approach in parameter regimes that have previously been studied with other methods and find good agreement of the magnetic phase diagram. Particularly, finite DM interactions are found to stabilize all types of non-collinear magnetic orders of the $J_1$-$J_2$ Heisenberg model ($mathbf{q}=0$, $sqrt{3}timessqrt{3}$, and cuboc orders) and shrink the extents of magnetically disordered phases. We discuss our results in the light of the mineral {it herbertsmithite} which has been experimentally predicted to host a quantum spin liquid at low temperatures. Our PFFRG data indicates that this material lies in close proximity to a quantum critical point. In parts of the experimentally relevant parameter regime for {it herbertsmithite}, the spin-correlation profile is found to be in good qualitative agreement with recent inelastic-neutron-scattering data.
We investigate the antiferromagnetic canting instability of the spin-1/2 kagome ferromagnet, as realized in the layered cuprates Cu$_3$Bi(SeO$_3)_2$O$_2$X (X=Br, Cl, and I). While the local canting can be explained in terms of competing exchange inte ractions, the direction of the ferrimagnetic order parameter fluctuates strongly even at short distances on account of frustration which gives rise to an infinite ground state degeneracy at the classical level. In analogy with the kagome antiferromagnet, the accidental degeneracy is fully lifted only by non-linear 1/S corrections, rendering the selected uniform canted phase very fragile even for spins-1/2, as shown explicitly by coupled-cluster calculations. To account for the observed ordering, we show that the minimal description of these systems must include the microscopic Dzyaloshinsky-Moriya interactions, which we obtain from density-functional band-structure calculations. The model explains all qualitative properties of the kagome francisites, including the detailed nature of the ground state and the anisotropic response under a magnetic field. The predicted magnon excitation spectrum and quantitative features of the magnetization process call for further experimental investigations of these compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا