ﻻ يوجد ملخص باللغة العربية
A method for quantum corrections of Hanbury-Brown/Twiss (HBT) interferometric radii produced by semi-classical event generators is proposed. These corrections account for the basic indistinguishability and mutual coherence of closely located emitters caused by the uncertainty principle. A detailed analysis is presented for pion interferometry in $p+p$ collisions at LHC energy ($sqrt{s}=7$ TeV). A prediction is also presented of pion interferometric radii for $p+$Pb collisions at $sqrt{s}=5.02$ TeV. The hydrodynamic/hydrokinetic model with UrQMD cascade as afterburner is utilized for this aim. It is found that quantum corrections to the interferometry radii improve significantly the event generator results which typically overestimate the experimental radii of small systems. A successful description of the interferometry structure of $p+p$ collisions within the corrected hydrodynamic model requires the study of the problem of thermalization mechanism, still a fundamental issue for ultrarelativistic $A+A$ collisions, also for high multiplicity $p+p$ and $p+$Pb events.
Effects of strong longitudinal colour electric fields (SCF), shadowing, and quenching on the open prompt charm mesons (D$^0$, D$^+$, D$^{*+}$, D${_s}{^+}$) production in central Pb + Pb collisions at $sqrt{s_{rm NN}}$ = 2.76 TeV are investigated with
% An analysis is made of the particle composition (hadrochemistry) of the final state in proton-proton (p-p), proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions as a function of the charged particle multiplicity ($dNchdeta$). The thermal model is us
Azimuthal particle correlations have been extensively studied in the past at various collider energies in p-p, p-A, and A-A collisions. Hadron-correlation measurements in heavy-ion collisions have mainly focused on studies of collective (flow) effect
The thermalization of the particles produced in collisions of small size objects can be achieved by quantum entanglement of the partons of the initial state as it was analyzed recently in proton-proton collisions. We extend such study to Pb-Pb collis
We calculate various azimuthal angle distributions for three jets produced in the forward rapidity region with transverse momenta $p_T>20,mathrm{GeV}$ in proton-proton (p-p) and proton-lead (p-Pb) collisions at center of mass energy $5.02,,mathrm{TeV