ﻻ يوجد ملخص باللغة العربية
We introduce the notion of z-topological orderings for digraphs. We prove that given a digraph G on n vertices admitting a z-topological order- ing, together with such an ordering, one may count the number of subgraphs of G that at the same time satisfy a monadic second order formula {phi} and are the union of k directed paths, in time f ({phi}, k, z) * n^O(k*z) . Our result implies the polynomial time solvability of many natural counting problems on digraphs admitting z-topological orderings for constant values of z and k. Concerning the relationship between z-topological orderability and other digraph width measures, we observe that any digraph of directed path-width d has a z- topological ordering for z <= 2d + 1. On the other hand, there are digraphs on n vertices admitting a z-topological order for z = 2, but whose directed path-width is {Theta}(log n). Since graphs of bounded directed path-width can have both arbitrarily large undirected tree-width and arbitrarily large clique width, our result provides for the first time a suitable way of partially trans- posing metatheorems developed in the context of the monadic second order logic of graphs of constant undirected tree-width and constant clique width to the realm of digraph width measures that are closed under taking subgraphs and whose constant levels incorporate families of graphs of arbitrarily large undirected tree-width and arbitrarily large clique width.
We introduce symmetric arithmetic circuits, i.e. arithmetic circuits with a natural symmetry restriction. In the context of circuits computing polynomials defined on a matrix of variables, such as the determinant or the permanent, the restriction amo
We show that there are CNF formulas which can be refuted in resolution in both small space and small width, but for which any small-width proof must have space exceeding by far the linear worst-case upper bound. This significantly strengthens the spa
Dawar and Wilsenach (ICALP 2020) introduce the model of symmetric arithmetic circuits and show an exponential separation between the sizes of symmetric circuits for computing the determinant and the permanent. The symmetry restriction is that the cir
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-
Let CMSO denote the counting monadic second order logic of graphs. We give a constructive proof that for some computable function $f$, there is an algorithm $mathfrak{A}$ that takes as input a CMSO sentence $varphi$, a positive integer $t$, and a con