ﻻ يوجد ملخص باللغة العربية
Graphs and networks are used to model interactions in a variety of contexts. There is a growing need to quickly assess the characteristics of a graph in order to understand its underlying structure. Some of the most useful metrics are triangle-based and give a measure of the connectedness of mutual friends. This is often summarized in terms of clustering coefficients, which measure the likelihood that two neighbors of a node are themselves connected. Computing these measures exactly for large-scale networks is prohibitively expensive in both memory and time. However, a recent wedge sampling algorithm has proved successful in efficiently and accurately estimating clustering coefficients. In this paper, we describe how to implement this approach in MapReduce to deal with massive graphs. We show results on publicly-available networks, the largest of which is 132M nodes and 4.7B edges, as well as artificially generated networks (using the Graph500 benchmark), the largest of which has 240M nodes and 8.5B edges. We can estimate the clustering coefficient by degree bin (e.g., we use exponential binning) and the number of triangles per bin, as well as the global clustering coefficient and total number of triangles, in an average of 0.33 seconds per million edges plus overhead (approximately 225 seconds total for our configuration). The technique can also be used to study triangle statistics such as the ratio of the highest and lowest degree, and we highlight differences between social and non-social networks. To the best of our knowledge, these are the largest triangle-based graph computations published to date.
Matching problems are ubiquitous. They occur in economic markets, labor markets, internet advertising, and elsewhere. In this paper we focus on an application of matching for social media. Our goal is to distribute content from information suppliers
We study the problem of approximating the $3$-profile of a large graph. $3$-profiles are generalizations of triangle counts that specify the number of times a small graph appears as an induced subgraph of a large graph. Our algorithm uses the novel c
Alon and Yuster proved that the number of orientations of any $n$-vertex graph in which every $K_3$ is transitively oriented is at most $2^{lfloor n^2/4rfloor}$ for $n geq 10^4$ and conjectured that the precise lower bound on $n$ should be $n geq 8$.
With the wealth of high-throughput sequencing data generated by recent large-scale consortia, predictive gene expression modelling has become an important tool for integrative analysis of transcriptomic and epigenetic data. However, sequencing data-s
Bollobas and Nikiforov [J. Combin. Theory, Ser. B. 97 (2007) 859--865] conjectured the following. If $G$ is a $K_{r+1}$-free graph on at least $r+1$ vertices and $m$ edges, then $lambda^2_1(G)+lambda^2_2(G)leq frac{r-1}{r}cdot2m$, where $lambda_1(G)$