We present depth-resolved experimental results on the atomic and electronic structures of the Co-Cr interface on four IrMn/Cr/Co thin films with variable thickness of the Cr layer. Grazing incidence X-ray absorption near edge structure near the Cr K-edge was used, and an Angstrom resolved depth-profile for this layer was obtained. An interdiffusion between chromium and cobalt layers was observed in all films, being more pronounced for samples with thinner Cr layers, where Cr behaves as an amorphous material. This causes a contraction in coordination distances in Cr near the interface with Co. In this region, a change in the electronic structure of chromiums 3d orbitals is also observed, and it appears that Cr and Co form a covalent bond resulting in a CrCo alloy. Ab initio numerical simulations support such an interpretation of the obtained experimental results.