ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of the 3DVAR Filter for the Partially Observed Lorenz 63 Model

110   0   0.0 ( 0 )
 نشر من قبل Kody Law
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of effectively combining data with a mathematical model constitutes a major challenge in applied mathematics. It is particular challenging for high-dimensional dynamical systems where data is received sequentially in time and the objective is to estimate the system state in an on-line fashion; this situation arises, for example, in weather forecasting. The sequential particle filter is then impractical and ad hoc filters, which employ some form of Gaussian approximation, are widely used. Prototypical of these ad hoc filters is the 3DVAR method. The goal of this paper is to analyze the 3DVAR method, using the Lorenz 63 model to exemplify the key ideas. The situation where the data is partial and noisy is studied, and both discrete time and continuous time data streams are considered. The theory demonstrates how the widely used technique of variance inflation acts to stabilize the filter, and hence leads to asymptotic accuracy.



قيم البحث

اقرأ أيضاً

Two different types of perturbations of the Lorenz 63 dynamical system for Rayleigh-Benard convection by multiplicative noise -- called stochastic advection by Lie transport (SALT) noise and fluctuation-dissipation (FD) noise -- are found to produce qualitatively different effects, possibly because the total phase-space volume contraction rates are different. In the process of making this comparison between effects of SALT and FD noise on the Lorenz 63 system, a stochastic version of a robust deterministic numerical algorithm for obtaining the individual numerical Lyapunov exponents was developed. With this stochastic version of the algorithm, the value of the sum of the Lyapunov exponents for the FD noise was found to differ significantly from the value of the deterministic Lorenz 63 system, whereas the SALT noise preserves the Lorenz 63 value with high accuracy. The Lagrangian averaged version of the SALT equations (LA SALT) is found to yield a closed deterministic subsystem for the expected solutions which is found to be isomorphic to the original Lorenz 63 dynamical system. The solutions of the closed chaotic subsystem, in turn, drive a linear stochastic system for the fluctuations of the LA SALT solutions around their expected values.
For every $rinmathbb{N}_{geq 2}cup{infty}$, we show that the space of ergodic measures is path connected for $C^r$-generic Lorenz attractors while it is not connected for $C^r$-dense Lorenz attractors. Various properties of the ergodic measure space for Lorenz attractors have been showed. In particular, a $C^r$-connecting lemma ($rgeq2$) for Lorenz attractors also has been proved. In $C^1$-topology, we obtain similar properties for singular hyperbolic attractors in higher dimensions.
Transient chaos is a characteristic behavior in nonlinear dynamics where trajectories in a certain region of phase space behave chaotically for a while, before escaping to an external attractor. In some situations the escapes are highly undesirable, so that it would be necessary to avoid such a situation. In this paper we apply a control method known as partial control that allows one to prevent the escapes of the trajectories to the external attractors, keeping the trajectories in the chaotic region forever. To illustrate how the method works, we have chosen the Lorenz system for a choice of parameters where transient chaos appears, as a paradigmatic example in nonlinear dynamics. We analyze three quite different ways to implement the method. First, we apply this method by building a 1D map using the successive maxima of one of the variables. Next, we implement it by building a 2D map through a Poincar{e} section. Finally, we built a 3D map, which has the advantage of using a fixed time interval between application of the control, which can be useful for practical applications.
Parameter estimation in multidimensional diffusion models with only one coordinate observed is highly relevant in many biological applications, but a statistically difficult problem. In neuroscience, the membrane potential evolution in single neurons can be measured at high frequency, but biophysical realistic models have to include the unobserved dynamics of ion channels. One such model is the stochastic Morris-Lecar model, defined by a nonlinear two-dimensional stochastic differential equation. The coordinates are coupled, that is, the unobserved coordinate is nonautonomous, the model exhibits oscillations to mimic the spiking behavior, which means it is not of gradient-type, and the measurement noise from intracellular recordings is typically negligible. Therefore, the hidden Markov model framework is degenerate, and available methods break down. The main contributions of this paper are an approach to estimate in this ill-posed situation and nonasymptotic convergence results for the method. Specifically, we propose a sequential Monte Carlo particle filter algorithm to impute the unobserved coordinate, and then estimate parameters maximizing a pseudo-likelihood through a stochastic version of the Expectation-Maximization algorithm. It turns out that even the rate scaling parameter governing the opening and closing of ion channels of the unobserved coordinate can be reasonably estimated. An experimental data set of intracellular recordings of the membrane potential of a spinal motoneuron of a red-eared turtle is analyzed, and the performance is further evaluated in a simulation study.
We consider one parameter families of vector fields introduced by Rovella, obtained through modifying the eigenvalues of the geometric Lorenz attractor, replacing the expanding condition on the eigenvalues of the singularity by a contracting one. We show that there is no statistical stability within the set of parameters for which there is a physical measure supported on the attractor. This is achieved obtaining a similar conclusion at the level of the corresponding one-dimensional contracting Lorenz maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا