ﻻ يوجد ملخص باللغة العربية
The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Sub-gap resonances for odd electron occupancy---interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related resonances at higher magnetic fields. An additional zero bias peak of unknown origin is observed to coexist with the quasiparticle bound states.
The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic count
We present a microscopic theory for the current through a tunnel Josephson junction coupled to a non-linear environment, which consists of an Andreev two-level system coupled to a harmonic oscillator. It models a recent experiment [Bretheau, Girit, P
We theoretically study the stability of more than one Majorana Fermion appearing in a $p$-wave superconductor/dirty normal metal/$p$-wave superconductor junction in two-dimension by using chiral symmetry of Hamiltonian. At the phase difference across
As part of the intense effort towards identifying platforms in which Majorana bound states can be realized and manipulated to perform qubit operations, we propose a topological Josephson junction architecture that achieves these capabilities and whic
We study the surface Andreev bound states (SABSs) and quasiparticle tunneling spectroscopy of three-dimensional (3D) chiral superconductor by changing the surface (interface) misorientation angle of chiral superconductors. We obtain analytical formul