ﻻ يوجد ملخص باللغة العربية
The transport of suspended Brownian particles dc-driven along corrugated narrow channels is numerically investigated in the regime of finite damping. We show that inertial corrections cannot be neglected as long as the width of the channel bottlenecks is smaller than an appropriate particle diffusion length, which depends on the the channel corrugation and the drive intensity. Being such a diffusion length inversely proportional to the damping constant, transport through sufficiently narrow obstructions turns out to be always sensitive to the viscosity of the suspension fluid. The inertia corrections to the transport quantifiers, mobility and diffusivity, markedly differ for smoothly and sharply corrugated channels.
We numerically investigate the transport of a suspended overdamped Brownian particle which is driven through a two-dimensional rectangular array of circular obstacles with finite radius. Two limiting cases are considered in detail, namely, when the c
Using Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that
We study the motion of an active Brownian particle (ABP) using overdamped Langevin dynamics on a two-dimensional substrate with periodic array of obstacles and in a quasi-one-dimensional corrugated channel comprised of periodically arrayed obstacles.
We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rat
Nuclear quantum effects, such as zero-point energy and tunneling, cause significant changes to the structure and dynamics of hydrogen bonded systems such as liquid water. However, due to the current inability to simulate liquid water using an exact d