ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel-ATLAS: Multi-wavelength SEDs and physical properties of 250 micron-selected galaxies at z < 0.5

302   0   0.0 ( 0 )
 نشر من قبل Dan Smith
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a pan-chromatic analysis of an unprecedented sample of 1402 250 micron-selected galaxies at z < 0.5 (mean z = 0.24) from the Herschel-ATLAS survey. We complement our Herschel 100-500 micron data with UV-K-band photometry from the Galaxy And Mass Assembly (GAMA) survey and apply the MAGPHYS energy-balance technique to produce pan-chromatic SEDs for a representative sample of 250 micron selected galaxies spanning the most recent 5 Gyr of cosmic history. We derive estimates of physical parameters, including star formation rates, stellar masses, dust masses and infrared luminosities. The typical H-ATLAS galaxy at z < 0.5 has a far-infrared luminosity in the range 10^10 - 10^12 Lsolar (SFR: 1-50 Msolar/yr) thus is broadly representative of normal star forming galaxies over this redshift range. We show that 250 micron-selected galaxies contain a larger mass of dust at a given infra-red luminosity or star formation rate than previous samples selected at 60 micron from IRAS. We derive typical SEDs for H-ATLAS galaxies, and show that the emergent SED shape is most sensitive to specific star formation rate. The optical-UV SEDs also become more reddened due to dust at higher redshifts. Our template SEDs are significantly cooler than existing infra-red templates. They may therefore be most appropriate for inferring total IR luminosities from moderate redshift submillimetre selected samples and for inclusion in models of the lower redshift submillimetre galaxy populations.



قيم البحث

اقرأ أيضاً

Aims. We aim to study the 250 micron luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods. We developed a modified stacking method to reconstruct the 250 micron LF using optically selected galaxies f rom the SDSS survey and Herschel maps of the GAMA equatorial fields and Stripe 82. Our stacking method not only recovers the mean 250 micron luminosities of galaxies that are too faint to be individually detected, but also their underlying distribution functions. Results. We find very good agreement with previous measurements in the overlapping luminosity range. More importantly, we are able to derive the LF down to much fainter luminosities (around 25 times fainter) than achieved by previous studies. We find strong positive luminosity evolution propto (1 + z)^4.89pm1.07 and moderate negative density evolution propto (1 + z)^-1.02pm0.54 over the redshift range z=[0.02, 0.5].
128 - G. G. Kacprzak 2011
We have used GIM2D to quantify the morphological properties of 40 intermediate redshift MgII absorption-selected galaxies (0.03<Wr(2796)<2.9 Ang), imaged with WFPC-2/HST, and compared them to the halo gas properties measured form HIRES/Keck and UVES/ VLT quasar spectra. We find that as the quasar-galaxy separation, D, increases the MgII equivalent decreases with large scatter, implying that D is not the only physical parameter affecting the distribution and quantity of halo gas. Our main result shows that inclination correlates with MgII absorption properties after normalizing out the relationship (and scatter) between the absorption properties and D. We find a 4.3 sigma correlation between Wr(2796) and galaxy inclination, normalized by impact parameter, i/D. Other measures of absorption optical depth also correlate with i/D at greater than 3.2 sigma significance. Overall, this result suggests that MgII gas has a co-planer geometry, not necessarily disk-like, that is coupled to the galaxy inclination. It is plausible that the absorbing gas arises from tidal streams, satellites, filaments, etc., which tend to have somewhat co-planer distributions. This result does not support a picture in which MgII absorbers with Wr(2796)<1A are predominantly produced by star-formation driven winds. We further find that; (1) MgII host galaxies have quantitatively similar bulge and disk scale length distribution to field galaxies at similar redshifts and have a mean disk and bulge scale length of 3.8kpc and 2.5kpc, respectively; (2) Galaxy color and luminosity do not correlate strongly with absorption properties, implying a lack of a connection between host galaxy star formation rates and absorption strength; (3) Parameters such as scale lengths and bulge-to-total ratios do not significantly correlate with the absorption parameters, suggesting that the absorption is independent of galaxy size or mass.
257 - S. Dye , L. Dunne , S. Eales 2010
We have determined the luminosity function of 250um-selected galaxies detected in the ~14 sq.deg science demonstration region of the Herschel-ATLAS project out to a redshift of z=0.5. Our findings very clearly show that the luminosity function evolve s steadily out to this redshift. By selecting a sub-group of sources within a fixed luminosity interval where incompleteness effects are minimal, we have measured a smooth increase in the comoving 250um luminosity density out to z=0.2 where it is 3.6+1.4-0.9 times higher than the local value.
143 - A. Enia , M. Negrello , M. Gurwell 2018
We perform lens modelling and source reconstruction of Submillimeter Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500$mu$m in the Herschel Astrophysical Terahertz Large Area Survey H-ATLAS. A previous analysis of the same dataset used a single S`ersic profile to model the light distribution of each background galaxy. Here we model the source brightness distribution with an adaptive pixel scale scheme, extended to work in the Fourier visibility space of interferometry. We also present new SMA observations for seven other candidate lensed galaxies from the H-ATLAS sample. Our derived lens model parameters are in general consistent with previous findings. However, our estimated magnification factors, ranging from 3 to 10, are lower. The discrepancies are observed in particular where the reconstructed source hints at the presence of multiple knots of emission. We define an effective radius of the reconstructed sources based on the area in the source plane where emission is detected above 5$sigma$. We also fit the reconstructed source surface brightness with an elliptical Gaussian model. We derive a median value $r_{eff},sim 1.77,$kpc and a median Gaussian full width at half maximum $sim1.47,$kpc. After correction for magnification, our sources have intrinsic star formation rates SFR$,sim900-3500,M_{odot}yr^{-1}$, resulting in a median star formation rate surface density $Sigma_{SFR}sim132,M_{odot}$ yr$^{-1}$ kpc$^{-2}$ (or $sim 218,M_{odot}$ yr$^{-1}$ kpc$^{-2}$ for the Gaussian fit). This is consistent with what observed for other star forming galaxies at similar redshifts, and is significantly below the Eddington limit for a radiation pressure regulated starburst.
151 - N. Bourne , L. Dunne , G. J. Bendo 2013
We present an analysis of CO molecular gas tracers in a sample of 500{mu}m-selected Herschel-ATLAS galaxies at z<0.05 (cz<14990km/s). Using 22-500{mu}m photometry from WISE, IRAS and Herschel, with HI data from the literature, we investigate correlat ions between warm and cold dust, and tracers of the gas in different phases. The correlation between global CO(3-2) line fluxes and FIR-submillimetre fluxes weakens with increasing IR wavelength ({lambda}>60{mu}m), as a result of colder dust being less strongly associated with dense gas. Conversely, CO(2-1) and HI line fluxes both appear to be better correlated with longer wavelengths, suggesting that cold dust is more strongly associated with diffuse atomic and molecular gas phases, consistent with it being at least partially heated by radiation from old stellar populations. The increased scatter at long wavelengths implies that submillimetre fluxes are a poorer tracer of SFR. Fluxes at 22 and 60{mu}m are also better correlated with diffuse gas tracers than dense CO(3-2), probably due to very-small-grain emission in the diffuse interstellar medium, which is not correlated with SFR. The FIR/CO luminosity ratio and the dust mass/CO luminosity ratio both decrease with increasing luminosity, as a result of either correlations between mass and metallicity (changing CO/H2) or between CO luminosity and excitation [changing CO(3-2)/CO(1-0)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا