ﻻ يوجد ملخص باللغة العربية
The statistical thermodynamics of straight rigid rods of length $k$ on triangular lattices was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the Helmholtz free energy and its derivatives were written in terms of the order parameter $delta$, which characterizes the nematic phase occurring in the system at intermediate densities. Then, using the principle of minimum free energy with $delta$ as a parameter, the main adsorption properties were calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the reaches and limitations of the theoretical model.
Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of self-assembled rigid rods on triangular and honeycomb lattices at intermediate density has been studied. The system is composed of monomers with two attractive (
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a two-dimensional system of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly
Numerical simulations and finite-size scaling analysis have been carried out to study the percolation behavior of straight rigid rods of length $k$ ($k$-mers) on two-dimensional square lattices. The $k$-mers, containing $k$ identical units (each one
Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of attractive rigid rods of length k (k-mers) on square lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of paralle
We argue that a system of straight rigid rods of length k on square lattice with only hard-core interactions shows two phase transitions as a function of density, rho, for k >= 7. The system undergoes a phase transition from the low-density disordere