ترغب بنشر مسار تعليمي؟ اضغط هنا

Stirring Unmagnetized Plasma

156   0   0.0 ( 0 )
 نشر من قبل Cami Collins
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new concept for spinning unmagnetized plasma is demonstrated experimentally. Plasma is confined by an axisymmetric multi-cusp magnetic field and biased cathodes are used to drive currents and impart a torque in the magnetized edge. Measurements show that flow viscously couples momentum from the magnetized edge (where the plasma viscosity is small) into the unmagnetized core (where the viscosity is large) and that the core rotates as a solid body. To be effective, collisional viscosity must overcome the ion-neutral drag due to charge exchange collisions.



قيم البحث

اقرأ أيضاً

Differentially rotating flows of unmagnetized, highly conducting plasmas have been created in the Plasma Couette Experiment. Previously, hot-cathodes have been used to control plasma rotation by a stirring technique [C. Collins et al., Phys. Rev. Let t. 108, 115001(2012)] on the outer cylindrical boundary---these plasmas were nearly rigid rotors, modified only by the presence of a neutral particle drag. Experiments have now been extended to include stirring from an inner boundary, allowing for generalized circular Couette flow and opening a path for both hydrodynamic and magnetohydrodynamic experiments, as well as fundamental studies of plasma viscosity. Plasma is confined in a cylindrical, axisymmetric, multicusp magnetic field, with $T_e< 10$ eV, $T_i<1$ eV, and $n_e<10^{11}$ cm$^{-3}$. Azimuthal flows (up to 12 km/s, $M=V/c_ssim 0.7$) are driven by edge ${bf J times B}$ torques in helium, neon, argon, and xenon plasmas, and the experiment has already achieved $Rmsim 65$ and $Pmsim 0.2 - 12$. We present measurements of a self-consistent, rotation-induced, species-dependent radial electric field, which acts together with pressure gradient to provide the centripetal acceleration for the ions. The maximum flow speeds scale with the Alfv{e}n critical ionization velocity, which occurs in partially ionized plasma. A hydrodynamic stability analysis in the context of the experimental geometry and achievable parameters is also explored.
Hypocycloid and epicycloid motions of irregular grain (pine pollen) are observed for the first time in unmagnetized dust plasma in 2D horizontal plane. Hypocycloid motions occur both inside and outside the glass ring which confines the grain. Epicycl oid motion only appears outside the glass ring. Cuspate cycloid motions, circle motion, and stationary grain are also observed. All these motions are related with both the initial conditions of dropped grain and the discharge parameters. The Magnus force originated from the spin of the irregular grain is confirmed by comparison experiments with regular microspheres, and it plays important role on these (cuspate) cycloid motions. The observed complex motions are explained in term of force analysis and numerical simulations. Periodical change of the cyclotron radius as the grain travelling results in the (cuspate) cycloid motions. Our results show that the (cuspate) cycloid motions are distinctive features of irregular grain immersed in plasma.
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implications of our results for a quark that is moving through the plasma in a straight line while decelerating, although in this case the classical calculation breaks down at the same value of the deceleration at which the radiation-dominated regime sets in.
Employing the Sagdeev pseudo-potential technique the ion acoustic solitary structures have been investigated in an unmagnetized collisionless plasma consisting of adiabatic warm ions, nonthermal electrons and isothermal positrons. The qualitatively d ifferent compositional parameter spaces clearly indicate the existence domains of solitons and double layers with respect to any parameter of the present plasma system. The present system supports the negative potential double layer which always restricts the occurrence of negative potential solitons. The system also supports positive potential double layers when the ratio of the average thermal velocity of positrons to that of electrons is less than a critical value. However, there exists a parameter regime for which the positive potential double layer is unable to restrict the occurrence of positive potential solitary waves and in this region of the parameter space, there exist positive potential solitary waves after the formation of a positive potential double layer. Consequently, positive potential supersolitons have been observed. The nonthermality of electrons plays an important role in the formation of positive potential double layers as well as positive potential supersolitons. The formation of positive potential supersoliton is analysed with the help of phase portraits of the dynamical system corresponding to the ion acoustic solitary structures of the present plasma system.
A Korteweg-de Vries (KdV) equation including the effect of Landau damping is derived to study the propagation of weakly nonlinear and weakly dispersive ion acoustic waves in a collisionless unmagnetized plasma consisting of warm adiabatic ions and tw o different species of electrons at different temperatures. The hotter energetic electron species follows the nonthermal velocity distribution of Cairns et al. [Geophys. Res. Lett. 22, 2709 (1995)] whereas the cooler electron species obeys the Boltzmann distribution. It is found that the coefficient of the nonlinear term of this KdV like evolution equation vanishes along different family of curves in different parameter planes. In this context, a modified KdV (MKdV) equation including the effect of Landau damping effectively describes the nonlinear behaviour of ion acoustic waves. It has also been observed that the coefficients of the nonlinear terms of the KdV and MKdV like evolution equations including the effect of Landau damping, are simultaneously equal to zero along a family of curves in the parameter plane. In this situation, we have derived a further modified KdV (FMKdV) equation including the effect of Landau damping to describe the nonlinear behaviour of ion acoustic waves. In fact, different modified KdV like evolution equations including the effect of Landau damping have been derived to describe the nonlinear behaviour of ion acoustic waves in different region of parameter space. The method of Ott & Sudan [Phys. Fluids 12, 2388 (1969)] has been applied to obtain the solitary wave solution of the evolution equation having the nonlinear term $(phi^{(1)})^{r}frac{partial phi^{(1)}}{partial xi}$, where $phi^{(1)}$ is the first order perturbed electrostatic potential and $r =1,2,3$. We have found that the amplitude of the solitary wave solution decreases with time for all $r =1,2,3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا