ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved limits on short-wavelength gravitational waves from the cosmic microwave background

133   0   0.0 ( 0 )
 نشر من قبل Irene Sendra
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cosmic microwave background (CMB) is affected by the total radiation density around the time of decoupling. At that epoch, neutrinos comprised a significant fraction of the radiative energy, but there could also be a contribution from primordial gravitational waves with frequencies greater than ~ 10^-15 Hz. If this cosmological gravitational wave background (CGWB) were produced under adiabatic initial conditions, its effects on the CMB and matter power spectrum would mimic massless non-interacting neutrinos. However, with homogenous initial conditions, as one might expect from certain models of inflation, pre big-bang models, phase transitions and other scenarios, the effect on the CMB would be distinct. We present updated observational bounds for both initial conditions using the latest CMB data at small scales from the South Pole Telescope (SPT) in combination with Wilkinson Microwave Anisotropy Probe (WMAP), current measurements of the baryon acoustic oscillations, and the Hubble parameter. With the inclusion of the data from SPT the adiabatic bound on the CGWB density is improved by a factor of 1.7 to 10^6 Omega_gw < 8.7 at the 95% confidence level (C.L.), with weak evidence in favor of an additional radiation component consistent with previous analyses. The constraint can be converted into an upper limit on the tension of horizon-sized cosmic strings that could generate this gravitational wave component, with Gmu < 2 10^-7 at 95% C.L., for string tension Gmu. The homogeneous bound improves by a factor of 3.5 to 10^6 Omega_gw < 1.0 at 95% C.L., with no evidence for such a component from current data.



قيم البحث

اقرأ أيضاً

The next generation of instruments designed to measure the polarization of the cosmic microwave background (CMB) will provide a historic opportunity to open the gravitational wave window to the primordial Universe. Through high sensitivity searches f or primordial gravitational waves, and tighter limits on the energy released in processes like phase transitions, the CMB polarization data of the next decade has the potential to transform our understanding of the laws of physics underlying the formation of the Universe.
Long-wavelength gravitational waves can induce significant temperature anisotropy in the cosmic microwave background. Distinguishing this from anisotropy induced by energy density fluctuations is critical for testing inflationary cosmology and theori es of large-scale structure formation. We describe full radiative transport calculations of the two contributions and show that they differ dramatically at angular scales below a few degrees. We show how anisotropy experiments probing large- and small-angular scales can combine to distinguish the imprint due to gravitational waves.
211 - Lotfi Boubekeur 2012
Tensor modes in the cosmic microwave background are one of the most robust signatures of inflation. We derive theoretical bounds on the tensor fraction, as a generalization of the well-known Lyth bound. Under reasonable assumptions, the new bounds ar e at least two orders of magnitude stronger than the original one. We comment on a previously derived generalization, the so-called Efstathiou-Mack relationship. We also derive a new absolute upper bound on tensors using de Sitter entropy bounds.
A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and inflationary `tensor modes. We explain and summarize the properties of relic gravitational waves that are needed to derive their effects on CMB temperature and polarization anisotropies. The radiation field is characterized by four invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre type and solve it analytically and numerically. We formulate the correlation functions C^{XX}_{ell} for X, X= T, E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using accurate approximations. We show that the TE correlation at lower ells must be negative (i.e. an anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations. This difference in TE correlation may be a signature more valuable observationally than the lack or presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB signal. We discuss the detection by WMAP of the TE anticorrelation at ell approx 30 and show that such an anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within the framework of all other common assumptions). We propose models containing considerable amounts of relic gravitational waves that are consistent with the measured TT, TE and EE correlations.
This is a summary of presentations delivered at the OC1 parallel session Primordial Gravitational Waves and the CMB of the 12th Marcel Grossmann meeting in Paris, July 2009. The reports and discussions demonstrated significant progress that was achie ved in theory and observations. It appears that the existing data provide some indications of the presence of gravitational wave contribution to the CMB anisotropies, while ongoing and planned observational efforts are likely to convert these indications into more confident statements about the actual detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا