ﻻ يوجد ملخص باللغة العربية
[Abridged] We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 micron. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large amplitude phase variations, combined with the planets previously-measured day-side spectral energy distribution, is indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared indicate that the atmospheric opacity is greater at 3.6 than at 4.5 micron, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies. We do not detect ellipsoidal variations at 3.6 micron, but our parameter uncertainties -estimated via prayer-bead Monte Carlo- keep this non-detection consistent with model predictions. At 4.5 micron, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planets elongated shape, these variations imply a 3:2 ratio for the planets longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 micron ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best fit 4.5 micron transit depth becomes commensurate with the 3.6 micron depth, within the uncertainties. The relative transit depths are then consistent with a Solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 micron eclipse depth, consistent with a Solar composition and modest temperature inversion. We suggest future observations that could distinguish between these two scenarios.
We report a new detection of the H-band thermal emission of CoRoT-1b and two confirmation detections of the Ks-band thermal emission of WASP-12b at secondary eclipses. The H-band measurement of CoRoT-1b shows an eclipse depth of 0.145%pm0.049% with a
WASP-12b is a transiting hot Jupiter on a 1.09-day orbit around a late-F star. Since the planets discovery in 2008, the time interval between transits has been decreasing by $29pm 2$ msec year$^{-1}$. This is a possible sign of orbital decay, althoug
The exoplanet WASP-12b is the prototype for the emerging class of ultra-hot, Jupiter-mass exoplanets. Past models have predicted---and near ultra-violet observations have shown---that this planet is losing mass. We present an analysis of two sets of
We report the detection of the eclipse of the very-hot Jupiter WASP-12b via z-band time-series photometry obtained with the 3.5-meter ARC telescope at Apache Point Observatory. We measure a decrease in flux of 0.082+/-0.015% during the passage of the
We analyse emission spectra of WASP-12b from a partial phase curve observed over three epochs with the Hubble Space Telescope, covering eclipse, quadrature, and transit, respectively. As the 1.1-day period phase curve was only partially covered over