ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate a non-imaging approach to displacement measurement for complex scattering materials. By spatially controlling the wave front of the light that incidents on the material we concentrate the scattered light in a focus on a designated position. This wave front acts as an unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two optical fingerprints we demonstrate position detection along one dimension with a displacement resolution of 2.1 nm. As our approach does not require an image of the scattered field, it is possible to employ fast non-imaging detectors to enable high-speed position detection of scattering materials.
Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales[1, 2]. The microscopic origin of friction is poorly understood, due in part to a lack of methods for measuring the force on a nanometer-scale asperi
Optical nanocavities confine and store light, which is essential to increase the interaction between photons and electrons in semiconductor devices, enabling, e.g., lasers and emerging quantum technologies. While temporal confinement has improved by
Laser speckle can provide a powerful tool that may be used for metrology, for example measurements of the incident laser wavelength with a resolution beyond that which may be achieved in a commercial device. However, to realise highest resolution req
We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called zipper cavity. A photonic crystal patterning is applied to the
Optical hyperspectral imaging based on absorption and scattering of photons at the visible and adjacent frequencies denotes one of the most informative and inclusive characterization methods in material research. Unfortunately, restricted by the diff