ﻻ يوجد ملخص باللغة العربية
Configuration space integrals have in recent years been used for studying the cohomology of spaces of (string) knots and links in $mathbb{R}^n$ for $n>3$ since they provide a map from a certain differential algebra of diagrams to the deRham complex of differential forms on the spaces of knots and links. We refine this construction so that it now applies to the space of homotopy string links -- the space of smooth maps of some number of copies of $mathbb{R}$ in $mathbb{R}^n$ with fixed behavior outside a compact set and such that the images of the copies of $R$ are disjoint -- even for $n=3$. We further study the case $n=3$ in degree zero and show that our integrals represent a universal finite type invariant of the space of classical homotopy string links. As a consequence, we obtain configuration space integral expressions for Milnor invariants of string links.
We study configuration space integral formulas for Milnors homotopy link invariants, showing that they are in correspondence with certain linear combinations of trivalent trees. Our proof is essentially a combinatorial analysis of a certain space of
We use rational formality of configuration spaces and the bar construction to study the cohomology of the space of braids in dimension four or greater. We provide a diagram complex for braids and a quasi-isomorphism to the de Rham cochains on the spa
We discuss an approach to the emph{covering} and emph{vanishing} theorems for the comparison map from bounded cohomology to singular cohomology, based on the observation that the comparison map is the coassembly map for bounded cohomology.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.
The index theory for the space of finite propagation unitary operators was developed by Gross, Nesme, Vogts and Werner from the viewpoint of quantum walks in mathematical physics. In particular, they proved that $pi_0$ of the space is determined by t