ترغب بنشر مسار تعليمي؟ اضغط هنا

The Young Pulsar J1357-6429 and Its Pulsar Wind Nebula

134   0   0.0 ( 0 )
 نشر من قبل Chulhoon Chang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chulhoon Chang




اسأل ChatGPT حول البحث

We observed the young pulsar J1357--6429 with the {it Chandra} and {it XMM-Newton} observatories. The pulsar spectrum fits well a combination of absorbed power-law model ($Gamma=1.7pm0.6$) and blackbody model ($kT=140^{+60}_{-40}$ eV, $Rsim2$ km at the distance of 2.5 kpc). Strong pulsations with pulsed fraction of $42%pm5%$, apparently associated with the thermal component, were detected in 0.3--1.1 keV. Surprisingly, pulsed fraction at higher energies, 1.1--10 keV, appears to be smaller, $23%pm4%$. The small emitting area of the thermal component either corresponds to a hotter fraction of the neutron star (NS) surface or indicates inapplicability of the simplistic blackbody description. The X-ray images also reveal a pulsar-wind nebula (PWN) with complex, asymmetric morphology comprised of a brighter, compact PWN surrounded by the fainter, much more extended PWN whose spectral slopes are $Gamma=1.3pm0.3$ and $Gamma=1.7pm0.2$, respectively. The extended PWN with the observed flux of $sim7.5times10^{-13}$ erg s$^{-1}$ cm$^{-2}$ is a factor of 10 more luminous then the compact PWN. The pulsar and its PWN are located close to the center of the extended TeV source HESS J1356--645, which strongly suggests that the VHE emission is powered by electrons injected by the pulsar long ago. The X-ray to TeV flux ratio, $sim0.1$, is similar to those of other relic PWNe. We found no other viable candidates to power the TeV source. A region of diffuse radio emission, offset from the pulsar toward the center of the TeV source, could be synchrotron emission from the same relic PWN rather than from the supernova remnant.



قيم البحث

اقرأ أيضاً

The first short Chandra and XMM-Newton observations of the young and energetic pulsar J1357-6429 provided strong indications of a tail-like pulsar-wind nebula associated with this object, as well as pulsations of its X-ray flux with a pulsed fraction above 50% and a thermal component dominating at lower photon energies (below 2 keV). The elongated nebula is very compact in size and may be interpreted as evidence for a pulsar jet. The thermal radiation is most plausibly emitted from the entire neutron star surface of a 10 km radius and a 1.0+/-0.1 K temperature, covered with a magnetized hydrogen atmosphere. At higher energies the pulsars emission is of a nonthermal (magnetospheric) origin, with a power-law spectrum of a photon index of 1.1-1.3. This makes the X-ray properties of PSR J1357-6429 very similar to those of the youngest pulsars J1119-6127 and Vela with a detected thermal radiation.
We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {rm pc})$. The photon indices of the power law spectra of the lateral tails, $Gamma approx 1$, are significantly harder than those of the pulsar ($Gamma approx 1.5$) and the axial tail ($Gamma approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.
PSR J1809-1917 is a young ($tau=51$ kyr) energetic ($dot{E}=1.8times10^{36}$ erg s$^{-1}$) radio pulsar powering an X-ray pulsar wind nebula (PWN) that exhibits morphological variability. We report on the results of a new monitoring campaign by the C handra X-ray Observatory (CXO), carried out across 6 epochs with a $sim$7-week cadence. The compact nebula can be interpreted as a jet-dominated outflow along the pulsars spin axis. Its variability can be the result of Doppler boosting in the kinked jet whose shape changes with time (akin to the Vela pulsar jet). The deep X-ray image, composed of 405 ks of new and 131 ks of archival CXO data, reveals an arcminute-scale extended nebula (EN) whose axis of symmetry aligns with both the axis of the compact nebula and the direction toward the peak of the nearby TeV source HESS J1809-193. The ENs morphology and extent suggest that the pulsar is likely moving through the ambient medium at a transonic velocity. We also resolved a faint 7$$-long nonthermal collimated structure protruding from the PWN. It is possibly another instance of a misaligned outflow (also known as a kinetic jet) produced by high-energy particles escaping the PWNs confinement and tracing the interstellar magnetic field lines. Finally, taking advantage of the 536 ks exposure, we analyzed the point sources in the J1809 field and classified them using multiwavelength data. None of the classified sources in the field can reasonably be expected to produce the extended TeV flux in the region, suggesting that PSR J1809-1917 is indeed the counterpart to HESS/eHWC J1809-193.
130 - Aya Bamba 2009
The results from a systematic study of eleven pulsar wind nebulae with a torus structure observed with the Chandra X-ray observatory are presented. A significant observational correlation is found between the radius of the tori, r, and the spin-down luminosity of the pulsars, Edot. A logarithmic linear fit between the two parameters yields log r = (0.57 +- 0.22) log Edot -22.3 +- 8.0 with a correlation coefficient of 0.82, where the units of r and Edot are pc and ergs s^-1, respectively. The value obtained for the Edot dependency of r is consistent with a square root law, which is theoretically expected. This is the first observational evidence of this dependency, and provides a useful tool to estimate the spin-down energies of pulsars without direct detections of pulsation. Applications of this dependency to some other samples are also shown.
The superb spatial resolution of Chandra has allowed us to detect a 20-long tail behind the Geminga pulsar, with a hard spectrum (photon index 1.0+/-0.2) and a luminosity (1.3+/-0.2) 10^{29} ergs/s in the 0.5 - 8 keV band, for an assumed distance of 200 pc. The tail could be either a pulsar jet, confined by a toroidal magnetic field of about 100 microGauss, or it can be associated with the shocked relativistic wind behind the supersonically moving pulsar confined by the ram pressure of the oncoming interstellar medium. We also detected an arc-like structure 5 - 7 ahead of the pulsar, extended perpendicular to the tail, with a factor of 3 lower luminosity. We see a 3-sigma enhancement in the Chandra image apparently connecting the arc with the southern outer tail that has been possibly detected with XMM-Newton. The observed structures imply that the Gemingas pulsar wind is intrinsically anisotropic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا