ﻻ يوجد ملخص باللغة العربية
Whereas Holm proved that the ring of differential operators on a generic hyperplane arrangement is finitely generated as an algebra, the problem of its Noetherian properties is still open. In this article, after proving that the ring of differential operators on a central arrangement is right Noetherian if and only if it is left Noetherian, we prove that the ring of differential operators on a central 2-arrangement is Noetherian. In addition, we prove that its graded ring associated to the order filtration is not Noetherian when the number of the consistuent hyperplanes is greater than 1.
We study prime ideals in skew power series rings $T:=R[[y;tau,delta]]$, for suitably conditioned right noetherian complete semilocal rings $R$, automorphisms $tau$ of $R$, and $tau$-derivations $delta$ of $R$. These rings were introduced by Venjakob,
An important instance of Rota-Baxter algebras from their quantum field theory application is the ring of Laurent series with a suitable projection. We view the ring of Laurent series as a special case of generalized power series rings with exponents
Let R be a commutative ring with identity. We investigate some ring-theoretic properties of weakly Laskerian R-modules. Our results indicate that weakly Laskerian rings behave as Noetherian ones in many respects. However, we provide some examples to
An arbitrary group action on an algebra $R$ results in an ideal $mathfrak{r}$ of $R$. This ideal $mathfrak{r}$ fits into the classical radical theory, and will be called the radical of the group action. If $R$ is a noetherian algebra with finite GK-d
We investigate left k-Noetherian and left k-Artinian semirings. We characterize such semirings using i-injective semimodules. We prove in particular, a partial version of the celebrated Bass-Papp Theorem for semiring. We illustrate our main results by examples and counter examples.