ﻻ يوجد ملخص باللغة العربية
We consider the dimensional regularization of the light-cone gauge type II superstring field theories in the NSR formalism. In the previous work, we have calculated the tree-level amplitudes with external lines in the (NS,NS) sector using the regularization and shown that the desired results are obtained without introducing contact term interactions. In this work, we study the tree-level amplitudes with external lines in the Ramond sector. In order to deal with them, we propose a worldsheet theory to be used instead of that for the naive dimensional regularization. With the worldsheet theory, we regularize and define the tree-level amplitudes by analytic continuation. We show that the results coincide with those of the first quantized formulation.
We propose a dimensional regularization scheme to deal with the divergences caused by colliding supercurrents inserted at the interaction points, in the light-cone gauge NSR superstring field theory. We formulate the theory in $d$ dimensions and defi
We review our recent proposals to dimensionally regularize the light-cone gauge string field theory.
We study the odd spin structure contributions to the multiloop amplitudes of light-cone gauge superstring field theory. We show that they coincide with the amplitudes in the conformal gauge with two of the vertex operators chosen to be in the picture
We study light-cone gauge string field theory in noncritical space-time dimensions. Such a theory corresponds to a string theory in a Lorentz noninvariant background. We identify the worldsheet theory for the longitudinal coordinate variables $X^pm$
In this article we present a comprehensive account of the operator formulation of the Green-Schwarz superstring in the semi-light-cone (SLC) gauge, where the worldsheet conformal invariance is preserved. Starting from the basic action, we systematica