ترغب بنشر مسار تعليمي؟ اضغط هنا

MESMER: MeerKAT Search for Molecules in the Epoch of Reionization

176   0   0.0 ( 0 )
 نشر من قبل Ian Heywood
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] Observations of molecular gas at all redshifts are critical for measuring the cosmic evolution in molecular gas density and understanding the star-formation history of the Universe. The 12CO molecule (J=1-0 transition = 115.27 GHz) is the best proxy for extragalactic H2, which is the gas reservoir from which star formation occurs, and has been detected out to z~6. Typically, redshifted high-J lines are observed at mm-wavelengths, the most commonly targeted systems exhibiting high SFRs (e.g. submm galaxies), and far-IR-bright QSOs. While the most luminous objects are the most readily observed, detections of more typical galaxies with modest SFRs are essential for completing the picture. ALMA will be revolutionary in terms of increasing the detection rate and pushing the sensitivity limit down to include such galaxies, however the limited FoV when observing at such high frequencies makes it difficult to use ALMA for studies of the large-scale structure traced out by molecular gas in galaxies. This article introduces a strategy for a systematic search for molecular gas during the EoR (z~7 and above), capitalizing on the fact that the J=1-0 transition of 12CO enters the upper bands of cm-wave instruments at high-z. The FoV advantage gained by observing at such frequencies, coupled with modern broadband correlators allows significant cosmological volumes to be probed on reasonable timescales. In this article we present an overview of our future observing programme which has been awarded 6,500 hours as one of the Large Survey Projects for MeerKAT, the forthcoming South African SKA pathfinder instrument. Its large FoV and correlator bandwidth, and high-sensitivity provide unprecedented survey speed for such work. An existing astrophysical simulation is coupled with instrumental considerations to demonstrate the feasibility of such observations and predict detection rates.



قيم البحث

اقرأ أيضاً

97 - V. Bosch-Ramon 2018
The reionization of the Universe ends the dark ages that started after the recombination era. In the case of H, reionization finishes around $zsim 6$. Faint star-forming galaxies are the best candidate sources of the H-ionizing radiation, although ac tive galactic nuclei may have also contributed. We have explored whether the termination regions of the jets from active galactic nuclei may have contributed significantly to the ionization of H in the late reionization epoch, around $zsim 6-7$. We assumed that, as it has been proposed, active galactic nuclei at $zsim 6$ may have presented a high jet fraction, accretion rate, and duty cycle, and that non-thermal electrons contribute significantly to the pressure of jet termination regions. Empirical black-hole mass functions were adopted to characterize the population of active galactic nuclei. From all this, estimates were derived for the isotropic H-ionizing radiation produced in the jet termination regions, at $zsim 6$, through inverse Compton scattering off CMB photons. We find that the termination regions of the jets of active galactic nuclei may have radiated most of their energy in the form of H-ionizing radiation at $zsim 6$. For typical black-hole mass functions at that redshift, under the considered conditions (long-lasting, common, and very active galactic nuclei with jets), the contribution of these jets to maintain (and possibly enhance) the ionization of H may have been non-negligible. We conclude that the termination regions of jets from active galactic nuclei could have had a significant role in the reionization of the Universe at $zgtrsim 6$.
117 - Ilian T. Iliev 2015
In this chapter we provide an overview of the current status of the simulations and modelling of the Cosmic Dawn and Epoch of Reionization. We discuss the modelling requirements as dictated by the characteristic scales of the problem and the SKA inst rumental properties and the planned survey parameters. Current simulations include most of the relevant physical processes. They can follow the full nonlinear dynamics and are now reaching the required scale and dynamic range, although small-scale physics still needs to be included at sub-grid level. However, despite a significant progress in developing novel numerical methods for efficient utilization of current hardware they remain quite computationally expensive. In response, a number of alternative approaches, particularly semi-analytical/semi-numerical methods, have been developed. While necessarily more approximate, if appropriately constructed and calibrated on simulations they could be used to quickly explore the vast parameter space available. Further work is still required on including some physical processes in both simulations and semi-analytical modelling. This hybrid approach of fast, approximate modelling calibrated on numerical simulations can then be used to construct large libraries of reionization models for reliable interpretation of the observational data.
93 - Wenxiao Xu , Yidong Xu , Bin Yue 2019
The neutral hydrogen (HI) and its 21 cm line are promising probes to the reionization process of the intergalactic medium (IGM). To use this probe effectively, it is imperative to have a good understanding on how the neutral hydrogen traces the under lying matter distribution. Here we study this problem using semi-numerical modeling by combining the HI in the IGM and the HI from halos during the epoch of reionization (EoR), and investigate the evolution and the scale-dependence of the neutral fraction bias as well as the 21 cm line bias. We find that the neutral fraction bias on large scales is negative during reionization, and its absolute value on large scales increases during the early stage of reionization and then decreases during the late stage. During the late stage of reionization, there is a transition scale at which the HI bias transits from negative on large scales to positive on small scales, and this scale increases as the reionization proceeds to the end.
72 - Meng Zhou , 2020
Intensity mapping of the HI 21 cm line and the CO 2.61 mm line from the epoch of reionization has emerged as powerful, complementary, probes of the high-redshift Universe. However, both maps and their cross-correlation are dominated by foregrounds. W e propose a new analysis by which the signal is unbiased by foregrounds, i.e. it can be measured without foreground mitigation. We construct the antisymmetric part of the HI-CO cross-correlation, arising because the statistical fluctuations of two fields have different evolution in time. We show that the sign of this new signal can distinguish model-independently whether inside-out reionization happens during some interval of time.
78 - Adam Lidz 2015
A major goal of observational and theoretical cosmology is to observe the largely unexplored time period in the history of our universe when the first galaxies form, and to interpret these measurements. Early galaxies dramatically impacted the gas ar ound them in the surrounding intergalactic medium (IGM) by photoionzing the gas during the Epoch of Reionization (EoR). This epoch likely spanned an extended stretch in cosmic time: ionized regions formed and grew around early generations of galaxies, gradually filling a larger and larger fraction of the volume of the universe. At some time -- thus far uncertain, but within the first billion years or so after the big bang -- essentially the entire volume of the universe became filled with ionized gas. The properties of the IGM provide valuable information regarding the formation time and nature of early galaxy populations, and many approaches for studying the first luminous sources are hence based on measurements of the surrounding intergalactic gas. The prospects for improved reionization-era observations of the IGM and early galaxy populations over the next decade are outstanding. Motivated by this, we review the current state of models of the IGM during reionization. We focus on a few key aspects of reionization-era phenomenology and describe: the redshift evolution of the volume-averaged ionization fraction, the properties of the sources and sinks of ionizing photons, along with models describing the spatial variations in the ionization fraction, the ultraviolet radiation field, the temperature of the IGM, and the gas density distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا