ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic and phononic properties of the chalcopyrite CuGaS2

102   0   0.0 ( 0 )
 نشر من قبل Reinhard Kremer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of CuGa2, a canonical ternary semiconductor of the chalcopyrite family. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume thermal expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation and the results are compared with data obtained on samples with the natural isotope composition for Cu, Ga and S, as well as for isotope enriched samples.



قيم البحث

اقرأ أيضاً

Over the past thirty years, it has been consistently observed that surface engineering of colloidal nanocrystals (NC) is key to their performance parameters. In the case of lead chalcogenide NCs, for example, replacing thiols with halide anion surfac e termination has been shown to increase power conversion efficiency in NC-based solar cells. To gain insight into the origins of these improvements, we perform ab initio molecular dynamics (AIMD) on experimentally-relevant sized lead sulfide (PbS) NCs constructed with thiol or Cl, Br, and I anion surfaces. The surface of both the thiol- and halide-terminated NCs exhibit low and high-energy phonon modes with large thermal displacements not present in bulk PbS; however, halide anion surface termination reduces the overlap of the electronic wavefunctions with these vibration modes. These findings suggest that electron-phonon interactions will be reduced in the halide terminated NCs, a conclusion that is supported by analyzing the time-dependent evolution of the electronic energies and wavefunctions extracted from the AIMD. This work explains why electron-phonon interactions are crucial to charge carrier dynamics in NCs and how surface engineering can be applied to systematically control their electronic and phononic properties. Furthermore, we propose that the computationally efficient approach of gauging electron-phonon interaction implemented here can be used to guide the design of application-specific surface terminations for arbitrary nanomaterials.
We report ab initio calculations of the electronic band structure, the corresponding optical spectra, and the phonon dispersion relations of trigonal alpha-HgS (cinnabar). The calculated dielectric functions are compared with unpublished optical meas urements by Zallen and coworkers. The phonon dispersion relations are used to calculate the temperature and isotopic mass dependence of the specific heat which has been compared with experimental data obtained on samples with the natural isotope abundances of the elements Hg and S (natural minerals and vapor phase grown samples) and on samples prepared from isotope enriched elements by vapor phase transport. Comparison of the calculated vibrational frequencies with Raman and ir data is also presented. Contrary to the case of cubic beta-HgS (metacinnabar), the spin-orbit splitting of the top valence bands at the Gamma-point of the Brillouin zone (Delta_0) is positive, because of a smaller admixture of 5d core electrons of Hg. Calculations of the lattice parameters, and the pressure dependence of Delta_0 and the corresponding direct gap E_0~2eV are also presented. The lowest absorption edge is confirmed to be indirect.
We report the stability and electronic structures of the boron nitride nanotubes (BNNTs) with diameters below 4 A by semi-empirical quantum mechanical molecular dynamics simulations and ab initio calculations. Among them (3,0), (3,1), (2,2), (4,0), ( 4,1) and (3,2) BNNTs can be stable well over room temperature. These small BNNTs become globally stable when encapsulated in a larger BNNT. It is found that the energy gaps and work functions of these small BNNTs are strongly dependent on their chirality and diameters. The small zigzag BNNTs become desirable semiconductors and have peculiar distribution of nearly free electron states due to strong hybridization effect. When such a small BNNT is inserted in a larger one, the energy gap of the formed double-walled BNNT can even be much reduced due to the coupled effect of wall buckling difference and NFE-pi hybridization.
We have measured the specific heat of zincblende ZnS for several isotopic compositions and over a broad temperature range (3 to 1100 K). We have compared these results with calculations based on ab initio electronic band structures, performed using b oth LDA and GGA exchange- correlation functionals. We have compared the lattice dynamics obtained in this manner with experimental data and have calculated the one-phonon and two-phonon densities of states. We have also calculated mode Grueneisen parameters at a number of high symmetry points of the Brillouin zone. The electronic part of our calculations has been used to investigate the effect of the 3d core electrons of zinc on the spin-orbit splitting of the top valence bands. The effect of these core electrons on the band structure of the rock salt modification of ZnS is also discussed.
We report ab initio calculations of the electronic band structure and the phonon dispersion relations of the zincblende-type mercury chalcogenides (beta-HgS, HgSe, and HgTe). The latter have been used to evaluate the temperature dependence of the spe cific heat which has been compared with experimental data. The electronic band structure of these materials has been confirmed to have an inverted direct gap of the alpha-tin type, which makes HgSe and HgTe semimetallic. For beta-HgS, however, our calculations predict a negative spin-orbit splitting which restores semiconducting properties to the material in spite of the inverted gap. We have calculated the spin-orbit induced linear terms in k which appear at the Gamma_8 valence bands. We have also investigated the pressure dependence of the crystal structure and the phonons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا