Appearance of fluctuating stripes at the onset of the pseudogap in the high-Tc Superconductor Bi2Sr2CaCu2O8+x


الملخص بالإنكليزية

Doped Mott insulators have been shown to have a strong propensity to form patterns of holes and spins often referred to as stripes. In copper-oxides, doping also gives rise to the pseudogap state, which transforms into a high temperature superconductor with sufficient doping or by reducing the temperature. A long standing question has been the interplay between pseudogap, which is generic to all hole-doped cuprates, and stripes, whose static form occurs in only one family of cuprates over a narrow range of the phase diagram. Here we examine the spatial reorganization of electronic states with the onset of the pseudogap state at T* in the high-temperature superconductor Bi2Sr2CaCu2O8+x using spectroscopic mapping with the scanning tunneling microscope (STM). We find that the onset of the pseudogap phase coincides with the appearance of electronic patterns that have the predicted characteristics of fluctuating stripes. As expected, the stripe patterns are strongest when the hole concentration in the CuO2 planes is close to 1/8 (per Cu). While demonstrating that the fluctuating stripes emerge with the onset of the pseudogap state and occur over a large part of the cuprate phase diagram, our experiments indicate that they are a consequence of pseudogap behavior rather than its cause.

تحميل البحث