ترغب بنشر مسار تعليمي؟ اضغط هنا

Appearance of fluctuating stripes at the onset of the pseudogap in the high-Tc Superconductor Bi2Sr2CaCu2O8+x

272   0   0.0 ( 0 )
 نشر من قبل Colin Parker
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Doped Mott insulators have been shown to have a strong propensity to form patterns of holes and spins often referred to as stripes. In copper-oxides, doping also gives rise to the pseudogap state, which transforms into a high temperature superconductor with sufficient doping or by reducing the temperature. A long standing question has been the interplay between pseudogap, which is generic to all hole-doped cuprates, and stripes, whose static form occurs in only one family of cuprates over a narrow range of the phase diagram. Here we examine the spatial reorganization of electronic states with the onset of the pseudogap state at T* in the high-temperature superconductor Bi2Sr2CaCu2O8+x using spectroscopic mapping with the scanning tunneling microscope (STM). We find that the onset of the pseudogap phase coincides with the appearance of electronic patterns that have the predicted characteristics of fluctuating stripes. As expected, the stripe patterns are strongest when the hole concentration in the CuO2 planes is close to 1/8 (per Cu). While demonstrating that the fluctuating stripes emerge with the onset of the pseudogap state and occur over a large part of the cuprate phase diagram, our experiments indicate that they are a consequence of pseudogap behavior rather than its cause.



قيم البحث

اقرأ أيضاً

Ultrahigh resolution angle-resolved photoemission spectroscopy with low-energy photons is used to study the detailed momentum dependence of the well-known nodal kink dispersion anomaly of Bi2Sr2CaCu2O8+{delta}. We find that the kinks location transit ions smoothly from a maximum binding energy of about 65 meV at the node of the d-wave superconducting gap to 55 meV roughly one-third of the way to the antinode. Meanwhile, the self-energy spectrum corresponding to the kink dramatically sharpens and intensifies beyond a critical point in momentum space. We discuss the possible bosonic spectrum in energy and momentum space that can couple to the k-space dispersion of the electronic kinks.
In this paper, we review some of our ARPES results on the superconducting and pseudo gaps in Bi2Sr2CaCu2O8+x. We find that optimally and overdoped samples exhibit a d-wave gap, which closes at the same temperature, Tc, for all k points. In underdoped samples, a leading edge gap is found up to a temperature T* > Tc. We find that T* scales with the maximum low temperature gap, increasing as the doping is reduced. The momentum dependence of the pseudogap is similar to that of the superconducting gap; however, the pseudogap closes at different temperatures for different k points.
A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the ze ro-temperature onset of that phase, namely at the critical doping p* where the pseudogap temperature T* goes to zero, accessed by investigating a material in which superconductivity can be fully suppressed by a steady magnetic field. Just below p*, the normal-state resistivity and Hall coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the temperature drops below T*, revealing a change in the Fermi surface with a large associated drop in conductivity. At p*, the resistivity shows a linear temperature dependence as T goes to zero, a typical signature of a quantum critical point. These findings impose new constraints on the mechanisms responsible for inelastic scattering and Fermi surface transformation in theories of the pseudogap phase.
137 - G. Garbarino , A. Sow , P. Lejay 2009
We have studied the structural and superconducting properties of tetragonal FeSe under pressures up to 26GPa using synchrotron radiation and diamond anvil cells. The bulk modulus of the tetragonal phase is 28.5(3)GPa, much smaller than the rest of Fe based superconductors. At 12GPa we observe a phase transition from the tetragonal to an orthorhombic symmetry. The high pressure orthorhombic phase has a higher Tc reaching 34K at 22GPa.
The nature of the pseudogap state, observed above the superconducting transition temperature TC in many high temperature superconductors, is the center of much debate. Recently, this discussion has focused on the number of energy gaps in these materi als. Some experiments indicate a single energy gap, implying that the pseudogap is a precursor state. Others indicate two, suggesting that it is a competing or coexisting phase. Here we report on temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We have found a new, narrow, homogeneous gap that vanishes near TC, superimposed on the typically observed, inhomogeneous, broad gap, which is only weakly temperature dependent. These results not only support the two gap picture, but also explain previously troubling differences between scanning tunneling microscopy and other experimental measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا