ترغب بنشر مسار تعليمي؟ اضغط هنا

Results from a Prototype Chicane-Based Energy Spectrometer for a Linear Collider

155   0   0.0 ( 0 )
 نشر من قبل Alexey Lyapin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The International Linear Collider and other proposed high energy e+ e- machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a measurement of the incident beam energy with an uncertainty close to 1e-4. This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006--2007 in SLACs End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5e-4 was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance.



قيم البحث

اقرأ أيضاً

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass e nergy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.
Superconducting niobium cavity technology (used for ILC) makes it possible to build a linear collider with energy recovery (ERLC). To avoid parasitic collisions inside the linacs a twin LC is proposed. In this article, we consider the principle schem e of the collider and its energy consumption, and also estimate the achievable luminosity, which is limited by collision effects. With a duty cycle of 1/3, a luminosity of about $5times 10^{35} ,rm cm^{-2}s^{-1}$ is possible, which is almost two orders of magnitude higher than at the ILC, where the beams are used only once.
The beam energy measurement system for the VEPP-2000 electron-positron collider is described. The method of Compton backscattering of $CO$ laser photons on the electron beam is used. The relative systematic uncertainty of the beam energy determinatio n is estimated as 6cdot10^{-5}. It was obtained through comparison of the results of the beam energy measurements using the Compton backscattering and resonance depolarization methods.
A high-resolution, intratrain position feedback system has been developed to achieve and maintain collisions at the proposed future electron-positron International Linear Collider (ILC). A prototype has been commissioned and tested with a beam in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization in Japan. It consists of a stripline beam position monitor (BPM) with analogue signal-processing electronics, a custom digital board to perform the feedback calculation, and a stripline kicker driven by a high-current amplifier. The closed-loop feedback latency is 148 ns. For a three-bunch train with 154 ns bunch spacing, the feedback system has been used to stabilize the third bunch to 450 nm. The kicker response is linear, and the feedback performance is maintained, over a correction range of over $pm$60 {mu}m. The propagation of the correction has been confirmed by using an independent stripline BPM located downstream of the feedback system. The system has been demonstrated to meet the BPM resolution, beam kick, and latency requirements for the ILC.
184 - Maryna Borysova 2021
The FCAL collaboration is preparing large-scale prototypes of special calorimeters to be used in the very forward region at future electron-positron colliders for a precise measurement of integrated luminosity and for instant luminosity measurement a nd assisting beam-tuning. LumiCal is designed as a silicon-tungsten sandwich calorimeter with very thin sensor planes to keep the Moli`ere radius small, facilitating such the measurement of electron showers in the presence of background. Dedicated front-end electronics has been developed to match the timing and dynamic range requirements. A partially instrumented prototype was investigated in a 1 to 5 GeV electron beam at the DESY II synchrotron. In the recent beam tests, a multi-plane compact prototype was equipped with thin detector planes fully assembled with readout electronics and installed in 1 mm gaps between tungsten plates of one radiation length thickness. High statistics data were used to perform sensor alignment, and to measure the longitudinal and transversal shower development in the sandwich. This talk covers the latest status of the calorimeter prototype development and selected performance results, obtained in test beam measurements, the prospects for the upcoming DESY test beam, as well as the expected simulation performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا