ترغب بنشر مسار تعليمي؟ اضغط هنا

Tungsten material properties at high temperature and high stress

495   0   0.0 ( 0 )
 نشر من قبل Goran Skoro
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. P. Skoro




اسأل ChatGPT حول البحث

Recently reported results on the long lifetime of the tungsten samples under high temperature and high stress conditions expected in the Neutrino Factory target have strengthened the case for a solid target option for the Neutrino Factory. In order to study in more details the behaviour of basic material properties of tungsten, a new method has been developed for measurement of tungsten Youngs modulus at high stress, high strain-rates (> 1000 s^-1) and very high temperatures (up to 2650 C). The method is based on measurements of the surface motion of tungsten wires, stressed by a pulsed current, using a Laser Doppler Vibrometer. The measured characteristic frequencies of wire expansion and contraction under the thermal loading have been used to directly obtain the tungsten Youngs modulus as a function of applied stress and temperature. The experimental results have been compared with modelling results and we have found that they agree very well. From the point of view of future use of tungsten as a high power target material, the most important result of this study is that Youngs modulus of tungsten remains high at high temperature, high stress and high strain-rates.



قيم البحث

اقرأ أيضاً

We observe large-scale surface terraces in tungsten oxidised at high temperature and in high vacuum. Their formation is highly dependent on crystal orientation, with only {111} grains showing prominent terraces. Terrace facets are aligned with {100} crystallographic planes, leading to an increase in total surface energy, making a diffusion-driven formation mechanism unlikely. Instead we hypothesize that preferential oxidation of {100} crystal planes controls terrace formation. Grain height profiles after oxidation and the morphology of samples heat treated with limited oxygen supply are consistent with this hypothesis. Our observations have important implications for the use of tungsten in extreme environments.
We have carried out temperature-dependent inelastic neutron scattering measurements of YMnO3 over the temperature range 50 - 1303 K, covering both the antiferromagnetic to paramagnetic transition (70 K), as well as the ferroelectric to paraelectric t ransition (1258 K). Measurements are accompanied by first principles calculations of phonon spectra for the sake of interpretation and analysis of the measured phonon spectra in the room temperature ferroelectric (P63cm) and high temperature paraelectric (P63/mmc) hexagonal phases of YMnO3. The comparison of the experimental and first-principles calculated phonon spectra highlight unambiguously a spin-phonon coupling character in YMnO3. This is further supported by the pronounced differences in the magnetic and non-magnetic phonon calculations. The calculated atomistic partial phonon contributions of the Y and Mn atoms are not affected by inclusion of magnetic interactions, whereas the dynamical contribution of the O atoms is found tochange. This highlights the role of the super-exchange interactions between the magnetic Mn cations, mediated by O bridges. Phonon dispersion relations have also been calculated, in the entire Brillouin zone, for both the hexagonal phases. In the high-temperature phase, unstable phonon mode at the K point is highlighted. The displacement pattern at the K-point indicates that the freezing of this mode along with the stable mode at the {Gamma}-point may lead to a stabilization of the low-temperature (P63cm) phase, and inducing ferroelectricity. Further, we have also estimated the mode Gruneisen parameter and volume thermal expansion behavior. The latter is found to agree with the available experimental data.
234 - T. Omiya , F. Matsukura , T. Dietl 1999
Magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As have been investigated. Measurements at low temperature (50 mK) and high magnetic field (<= 27 T) have been employed in order to determine the hole concentration p = 3.5x10^20 cm ^- 3 of a metallic (Ga0.947Mn0.053)As layer. The analysis of the temperature and magnetic field dependencies of the resistivity in the paramagnetic region was performed with the use of the above value of p, which gave the magnitude of p-d exchange energy |N0beta | ~ 1.5 eV.
Theoretical predictions of pressure-induced phase transformations often become long-standing enigmas because of limitations of contemporary available experimental possibilities. Hitherto the existence of a non-icosahedral boron allotrope has been one of them. Here we report on the first non-icosahedral boron allotrope, which we denoted as {zeta}-B, with the orthorhombic {alpha}-Ga-type structure (space group Cmce) synthesized in a diamond anvil cell at extreme high-pressure high-temperature conditions (115 GPa and 2100 K). The structure of {zeta}-B was solved using single-crystal synchrotron X-ray diffraction and its compressional behavior was studied in the range of very high pressures (115 GPa to 135 GPa). Experimental validation of theoretical predictions reveals the degree of our up-to-date comprehension of condensed matter and promotes further development of the solid state physics and chemistry.
X-ray diffraction and Raman scattering measurements, and first-principles calculations are performed to search for the formation of NaCl-hydrogen compound. When NaCl and H$_{2}$ mixture is laser-heated to above 1500 K at pressures exceeding 40 GPa, w e observed the formation of NaClH$_{textit{x}}$ with $textit{P}$6$_{3}$/$textit{mmc}$ structure which accommodates H$_{2}$ molecules in the interstitial sites of NaCl lattice forming ABAC stacking. Upon the decrease of pressure at 300 K, NaClH$_textit{x}$ remains stable down to 17 GPa. Our calculations suggest the observed NaClH$_{textit{x}}$ is NaCl(H$_{2}$). Besides, a hydrogen-richer phase NaCl(H$_{2}$)$_{4}$ is predicted to become stable at pressures above 40 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا