ﻻ يوجد ملخص باللغة العربية
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites, and advanced applications for specific scientific purposes, such as a connection to robotic telescopes. We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
Machine learning (ML) is an important part of modern data science applications. Data scientists today have to manage the end-to-end ML life cycle that includes both model training and model serving, the latter of which is essential, as it makes their
Structure, functionality, parameters and organization of the computing Grid in Poland is described, mainly from the perspective of high-energy particle physics community, currently its largest consumer and developer. It represents distributed Tier-2
With many large science equipment constructing and putting into use, astronomy has stepped into the big data era. The new method and infrastructure of big data processing has become a new requirement of many astronomers. Cloud computing, Map/Reduce,
The Open Science Grid(OSG) is a world-wide computing system which facilitates distributed computing for scientific research. It can distribute a computationally intensive job to geo-distributed clusters and process jobs tasks in parallel. For compute
During the first observation run the LIGO collaboration needed to offload some of its most, intense CPU workflows from its dedicated computing sites to opportunistic resources. Open Science Grid enabled LIGO to run PyCbC, RIFT and Bayeswave workflows