ﻻ يوجد ملخص باللغة العربية
We consider a random walk on one-dimensional inhomogeneous graphs built from Cantor fractals. Our study is motivated by recent experiments that demonstrated superdiffusion of light in complex disordered materials, thereby termed Levy glasses. We introduce a geometric parameter $alpha$ which plays a role analogous to the exponent characterizing the step length distribution in random systems. We study the large-time behavior of both local and average observables; for the latter case, we distinguish two different types of averages, respectively over the set of all initial sites and over the scattering sites only. The single long jump approximation is applied to analytically determine the different asymptotic behaviours as a function of $alpha$ and to understand their origin. We also discuss the possibility that the root of the mean square displacement and the characteristic length of the walker distribution may grow according to different power laws; this anomalous behaviour is typical of processes characterized by Levy statistics and here, in particular, it is shown to influence average quantities.
We study the effects of scattering lengths on Levy walks in quenched one-dimensional random and fractal quasi-lattices, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling properties of the random-walk probability
Thermal conductivities are routinely calculated in molecular dynamics simulations by keeping the boundaries at different temperatures and measuring the slope of the temperature profile in the bulk of the material, explicitly using Fouriers law of hea
We analyze the mean squared displacement of a Brownian particle in a medium with a spatially varying local diffusivity which is assumed to be periodic. When the system is asymptotically diffusive the mean squared displacement, characterizing the disp
We study numerically the coarsening dynamics of the Ising model on a regular lattice with random bonds and on deterministic fractal substrates. We propose a unifying interpretation of the phase-ordering processes based on two classes of dynamical beh
We consider the transport of conserved charges in spatially inhomogeneous quantum systems with a discrete lattice symmetry. We analyse the retarded two point functions involving the charge and the associated currents at long wavelengths, compared to