ﻻ يوجد ملخص باللغة العربية
We analysed 866 observations of the neutron-star low-mass X-ray binary XTE J1701-462 during its 2006-2007 outburst. XTE J1701-462 is the only example so far of a source that during an outburst showed, beyond any doubt, spectral and timing characteristics both of the Z and atoll type. We found that the lower kHz QPO in the atoll phase has a significantly higher coherence and fractional rms amplitude than any of the kHz QPOs seen during the Z phase, and that in the same frequency range, atoll lower kHz QPOs show coherence and fractional rms amplitude, respectively, 2 and 3 times larger than the Z kHz QPOs. Out of the 707 observations in the Z phase, there is no single observation in which the kHz QPOs have a coherence or rms amplitude similar to those seen when XTE J1701-462 was in the atoll phase, even though the total exposure time was about 5 times longer in the Z than in the atoll phase. Since it is observed in the same source, the difference in QPO coherence and rms amplitude between the Z and atoll phase cannot be due to neutron-star mass, magnetic field, spin, inclination of the accretion disk, etc. If the QPO frequency is a function of the radius in the accretion disk in which it is produced, our results suggest that in XTE J1701-462 the coherence and rms amplitude are not uniquely related to this radius. Here we argue that this difference is instead due to a change in the properties of the accretion flow around the neutron star. Regardless of the precise mechanism, our result shows that effects other than the geometry of space time around the neutron star have a strong influence on the coherence and rms amplitude of the kHz QPOs, and therefore the coherence and rms amplitude of the kHz QPOs cannot be simply used to deduce the existence of the innermost stable circular orbit around a neutron star.
The neutron-star X-ray transient XTE J1701-462 was observed for $sim$3 Ms with xte during its 2006-2007 outburst. Here we report on the discovery of three type-I X-ray bursts from XTE J1701-462. They occurred as the source was in transition from the
We investigate the quality factor and RMS amplitude of the lower kHz QPOs from XTE J1701-462, a unique X-ray source which was observed in both the so-called Z and atoll states. Correcting for the frequency drift of the QPO, we show that, as in all so
We analysed all archival RXTE observations of the neutron-star low-mass X-ray binary 4U 1636-53 up to May 2010. In 528 out of 1280 observations we detected kilohertz quasi-periodic oscillations (kHz QPOs), with ~ 65% of these detections corresponding
When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently
We present for the neutron-star low-mass X-ray binary 4U 1636$-$53, and for the first time for any source of kilohertz quasi-periodic oscillations (kHz QPOs), the two-dimensional behaviour of the fractional rms amplitude of the kHz QPOs in the parame