ترغب بنشر مسار تعليمي؟ اضغط هنا

The kilohertz quasi-periodic oscillations during the Z and atoll phases of the unique transient XTE J1701--462

101   0   0.0 ( 0 )
 نشر من قبل Andrea Sanna
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Sanna




اسأل ChatGPT حول البحث

We analysed 866 observations of the neutron-star low-mass X-ray binary XTE J1701-462 during its 2006-2007 outburst. XTE J1701-462 is the only example so far of a source that during an outburst showed, beyond any doubt, spectral and timing characteristics both of the Z and atoll type. We found that the lower kHz QPO in the atoll phase has a significantly higher coherence and fractional rms amplitude than any of the kHz QPOs seen during the Z phase, and that in the same frequency range, atoll lower kHz QPOs show coherence and fractional rms amplitude, respectively, 2 and 3 times larger than the Z kHz QPOs. Out of the 707 observations in the Z phase, there is no single observation in which the kHz QPOs have a coherence or rms amplitude similar to those seen when XTE J1701-462 was in the atoll phase, even though the total exposure time was about 5 times longer in the Z than in the atoll phase. Since it is observed in the same source, the difference in QPO coherence and rms amplitude between the Z and atoll phase cannot be due to neutron-star mass, magnetic field, spin, inclination of the accretion disk, etc. If the QPO frequency is a function of the radius in the accretion disk in which it is produced, our results suggest that in XTE J1701-462 the coherence and rms amplitude are not uniquely related to this radius. Here we argue that this difference is instead due to a change in the properties of the accretion flow around the neutron star. Regardless of the precise mechanism, our result shows that effects other than the geometry of space time around the neutron star have a strong influence on the coherence and rms amplitude of the kHz QPOs, and therefore the coherence and rms amplitude of the kHz QPOs cannot be simply used to deduce the existence of the innermost stable circular orbit around a neutron star.



قيم البحث

اقرأ أيضاً

233 - Dacheng Lin 2009
The neutron-star X-ray transient XTE J1701-462 was observed for $sim$3 Ms with xte during its 2006-2007 outburst. Here we report on the discovery of three type-I X-ray bursts from XTE J1701-462. They occurred as the source was in transition from the typical Z-source behavior to the typical atoll-source behavior, at $sim10%$ of the Eddington luminosity. The first burst was detected in the Z-source flaring branch; the second in the vertex between the flaring and normal branches; and the third in the atoll-source soft state. The detection of the burst in the flaring branch cast doubts on earlier speculations that the flaring branch is due to unstable nuclear burning of accreted matter. The last two of the three bursts show photospheric radius expansion, from which we estimate the distance to the source to be 8.8 kpc with a 15% uncertainty. No significant burst oscillations in the range 30 to 4000 Hz were found during these three bursts.
We investigate the quality factor and RMS amplitude of the lower kHz QPOs from XTE J1701-462, a unique X-ray source which was observed in both the so-called Z and atoll states. Correcting for the frequency drift of the QPO, we show that, as in all so urces for which such a correction can be applied, the quality factor and RMS amplitude drops sharply above above a critical frequency. For XTE J1701-462 this frequency is estimated to be ~800 Hz, where the quality factor reaches a maximum of ~200 (e.g. a value consistent with the one observed from more classical systems, such as 4U~1636-536). Such a drop has been interpreted as the signature of the innermost stable circular orbit, and that interpretation is consistent with the observations we report here. The kHz QPOs in the Z state are much less coherent and lower amplitude than they are in the atoll state. We argue that the change of the QPO properties between the two source states is related to the change of the scale height of the accretion disk; a prediction of the toy model proposed by barret et al. (2007). As a by-product of our analysis, we also increased the significance of the upper kHz QPO detected in the atoll phase up to 4.8 sigma (single trial significance), and show that the frequency separation (266.5+/-13.1 Hz) is comparable with the one measured from simultaneous twin QPOs the Z phase.
143 - Andrea Sanna 2012
We analysed all archival RXTE observations of the neutron-star low-mass X-ray binary 4U 1636-53 up to May 2010. In 528 out of 1280 observations we detected kilohertz quasi-periodic oscillations (kHz QPOs), with ~ 65% of these detections corresponding to the so-called lower kHz QPO. Using this QPO we measured, for the first time, the rate at which the QPO frequency changes as a function of QPO frequency. For this we used the spread of the QPO frequency over groups of 10 consecutive measurements, sampling timescales between 320 and 1600 s, and the time derivative of the QPO frequency over timescales of 32 to 160 s. We found that: (i) Both the QPO-frequency spread and the QPO time derivative decrease by a factor ~ 3 as the QPO frequency increases. (ii) The average value of the QPO time derivative decreases by a factor of ~ 2 as the timescale over which the derivative is measured increases from less than 64 s to 160 s. (iii) The relation between the absolute value of the QPO time derivative and the QPO frequency is consistent with being the same both for the positive and negative QPO-frequency derivative. We show that, if either the lower or the upper kHz QPO reflects the Keplerian frequency at the inner edge of the accretion disc, these results support a scenario in which the inner part of the accretion disc is truncated at a radius that is set by the combined effect of viscosity and radiation drag.
When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently inefficient, it is reasonable to consider this layer as a spreading layer (SL) with negligible radial extent and structure. We perform hydrodynamical 2D spectral simulations of an SL, considering the disc as a source of matter and angular momentum. Interaction of new, rapidly rotating matter with the pre-existing, relatively slow material co-rotating with the star leads to instabilities capable of transferring angular momentum and creating variability on dynamical timescales. For small accretion rates, we find that the SL is unstable for heating instability that disrupts the initial latitudinal symmetry and produces large deviations between the two hemispheres. This instability also results in breaking of the axial symmetry as coherent flow structures are formed and escape from the SL intermittently. At enhanced accretion rates, the SL is prone to shearing instability and acts as a source of oblique waves that propagate towards the poles, leading to patterns that again break the axial symmetry. We compute artificial light curves of an SL viewed at different inclination angles. Most of the simulated light curves show oscillations at frequencies close to 1kHz. We interpret these oscillations as inertial modes excited by shear instabilities near the boundary of the SL. Their frequencies, dependence on flux, and amplitude variations can explain the high-frequency pair quasi-periodic oscillations observed in many low-mass X-ray binaries.
We present for the neutron-star low-mass X-ray binary 4U 1636$-$53, and for the first time for any source of kilohertz quasi-periodic oscillations (kHz QPOs), the two-dimensional behaviour of the fractional rms amplitude of the kHz QPOs in the parame ter space defined by QPO frequency and photon energy. We find that the rms amplitude of the lower kHz QPO increases with energy up to $sim12$ keV and then decreases at higher energies, while the rms amplitude of the upper kHz QPO either continues increasing or levels off at high energies. The rms amplitude of the lower kHz QPO increases and then decreases with frequency, peaking at $sim 760$ Hz, while the amplitude of the upper kHz QPO decreases with frequency, with a local maximum at around $sim 770$ Hz, and is consistent with becoming zero at the same QPO frequency, $sim1400$ Hz, in all energy bands, thus constraining the neutron-star mass at $M_{NS} leq 1.6 M_{odot}$, under the assumption that this QPO reflects the Keplerian frequency at the inner edge of the accretion disc. We show that the slope of the rms energy spectrum is connected to the changing properties of the kHz QPOs in different energy bands as its frequencies change. Finally, we discuss a possible mechanism responsible for the radiative properties of the kHz QPOs and, based on a model in which the QPO arises from oscillations in a Comptonising cloud of hot electrons, we show that the properties of the kHz QPOs can constrain the thermodynamic properties of the inner accretion flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا