ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel PEP: The star-formation rates of 1.5<z<2.5 massive galaxies

184   0   0.0 ( 0 )
 نشر من قبل Raanan Nordon
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The star formation rate (SFR) is a key parameter in the study of galaxy evolution. The accuracy of SFR measurements at z~2 has been questioned following a disagreement between observations and theoretical models. The latter predict SFRs at this redshift that are typically a factor 4 or more lower than the measurements. We present star-formation rates based on calorimetric measurements of the far-infrared (FIR) luminosities for massive 1.5<z<2.5, normal star-forming galaxies (SFGs), which do not depend on extinction corrections and/or extrapolations of spectral energy distributions. The measurements are based on observations in GOODS-N with the Photodetector Array Camera & Spectrometer (PACS) onboard Herschel, as part of the PACS Evolutionary Probe (PEP) project, that resolve for the first time individual SFGs at these redshifts at FIR wavelengths. We compare FIR-based SFRs to the more commonly used 24 micron and UV SFRs. We find that SFRs from 24 micron alone are higher by a factor of ~4-7.5 than the true SFRs. This overestimation depends on luminosity: gradually increasing for log L(24um)>12.2 L_sun. The SFGs and AGNs tend to exhibit the same 24 micron excess. The UV SFRs are in closer agreement with the FIR-based SFRs. Using a Calzetti UV extinction correction results in a mean excess of up to 0.3 dex and a scatter of 0.35 dex from the FIR SFRs. The previous UV SFRs are thus confirmed and the mean excess, while narrowing the gap, is insufficient to explain the discrepancy between the observed SFRs and simulation predictions.



قيم البحث

اقرأ أيضاً

We compare the average star formation (SF) activity in X-ray selected AGN hosts with mass-matched control inactive galaxies,including star forming and quiescent sources, at 0.5<z<2.5. Recent observations carried out by PACS, the 60-210um Herschel pho tometric camera, in GOODS-S, GOODS-N and COSMOS allow us to unbiasedly estimate the far-IR luminosity, and hence the SF properties, of the two samples. Accurate AGN host stellar masses are measured by decomposing their total emission into the stellar and nuclear components. We find a higher average SF activity in AGN hosts with respect to non-AGNs. The level of SF enhancement is modest (~0.26dex at ~3sigma) at low X-ray luminosities (Lx<~10^43.5erg/s) and more pronounced (0.56dex at >10sigma) for bright AGNs. However, when comparing to star forming galaxies only, AGN hosts are broadly consistent with the locus of their `main sequence. We investigate the relative far-IR luminosity distributions of active and inactive galaxies, and find a higher fraction of PACS detected, hence normal and highly star forming systems among AGN hosts. Although different interpretations are possible, we explain our findings as a consequence of a twofold AGN growth path: faint AGNs evolve through secular processes, with instantaneous AGN accretion not tightly linked to the current total SF in the host, while luminous AGNs co-evolve with their hosts through periods of enhanced AGN activity and SF, possibly through major mergers. While an increased SF with respect to non-AGNs of similar mass is expected in the latter, we interpret the modest SF offsets measured in low-Lx AGN hosts as either a) generated by non-synchronous accretion and SF histories in a merger scenario or b) due to possible connections between instantaneous SF and accretion that can be induced by smaller scale (non-major merger) mechanisms. Far-IR luminosity distributions favour the latter scenario.
We report the results of a comprehensive study of the relationship between galaxy size, stellar mass and specific star-formation rate (sSFR) at redshifts 1.3<z<1.5. Based on a mass complete (M_star >= 6x10^10 Msun), spectroscopic sample from the UKID SS Ultra-deep Survey (UDS), with accurate stellar-mass measurements derived from spectro photometric fitting, we find that at z~1.4 the location of massive galaxies on the size-mass plane is determined primarily by their sSFR. At this epoch we find that massive galaxies which are passive (sSFR <= 0.1 Gyr^-1) follow a tight size-mass relation, with half-light radii a factor f=2.4+/-0.2 smaller than their local counterparts. Moreover, amongst the passive sub-sample we find no evidence that the off-set from the local size-mass relation is a function of stellar population age. Based on a sub-sample with dynamical mass estimates we also derive an independent estimate of f=2.3+/-0.3 for the typical growth in half-light radius between z~1.4 and the present day. Focusing on the passive sub-sample, we conclude that to produce the necessary evolution predominantly via major mergers would require an unfeasible number of merger events and over populate the high-mass end of the local stellar mass function. In contrast, we find that a scenario in which mass accretion is dominated by minor mergers can produce the necessary evolution, whereby an increase in stellar mass by a factor of ~2, accompanied by an increase in size by a factor of ~3.5, is sufficient to reconcile the size-mass relation at z~1.4 with that observed locally. Finally, we note that a significant fraction (44+/-12%) of the passive galaxies in our sample have a disk-like morphology, providing additional evidence that separate physical processes are responsible for the quenching of star-formation and the morphological transformation of massive galaxies (abridged).
Multi-wavelength, optical to IR/sub-mm observations of 5 strongly lensed galaxies identified by the Herschel Lensing Survey, plus two well-studied lensed galaxies, MS1512-cB58 and the Cosmic Eye, for which we also provide updated Herschel measurement s, are used to determine the physical properties of z~1.5-3 star-forming galaxies close to or below the detection limits of blank fields. We constrain their stellar and dust content, determine star formation rates and histories, dust attenuation and extinction laws, and other related properties. We perform SED-fits of the full photometry of each object as well for the optical and infrared parts separately, exploring various parameters, including nebular emission. The IR observations and emission line measurements, where available, are used a posteriori constraints on the models. Besides the various stellar population models we explore, we use the observed IR/UV ratio to estimate the extinction and create energy conserving models, that constrain most accurately the physical properties of our sources. Our sample has a median lensing-corrected IR luminosity ~ 3e11 Lsun, stellar masses between 2e9 and 2e11 Msun, and IR/UV luminosity ratios spanning a wide range. The dust masses of our galaxies are in the range 2 to 17e7 Msun, extending previous studies at the same redshift down to lower masses. We do not find any particular trend of the dust temperature Tdust with IR luminosity, suggesting an overall warmer dust regime at our redshift regardless of luminosity. Lensing enables us to study the detailed physical properties of individual IR-detected z~1.5-3 galaxies up to a factor ~10 fainter than achieved with deep blank field observations. We demonstrate that multi-wavelength observations combining stellar and dust emission can constrain star formation histories and extinction laws of star-forming galaxies.
We compare multi-wavelength SFR indicators out to z~3 in GOODS-South. Our analysis uniquely combines U-to-8um photometry from FIREWORKS, MIPS 24um and PACS 70, 100, and 160um photometry from the PEP survey, and Ha spectroscopy from the SINS survey. We describe a set of
We investigate the properties (e.g. star formation rate, dust attentuation, stellar mass and metallicity) of a sample of infrared luminous galaxies at z sim 1 via near-IR spectroscopy with Subaru-FMOS. Our sample consists of Herschel SPIRE and Spitze r MIPS selected sources in the COSMOS field with photometric redshifts in the range 0.7 < z-phot < 1.8, which have been targeted in 2 pointings (0.5 sq. deg.) with FMOS. We find a modest success rate for emission line detections, with candidate H{alpha} emission lines detected for 57 of 168 SPIRE sources (34 per cent). By stacking the near-IR spectra we directly measure the mean Balmer decrement for the H{alpha} and H{beta} lines, finding a value of <E(B-V)> = 0.51pm0.27 for <LIR> = 10^12 Lsol sources at <z> = 1.36. By comparing star formation rates estimated from the IR and from the dust uncorrected H{alpha} line we find a strong relationship between dust attenuation and star formation rate. This relation is broadly consistent with that previously seen in star-forming galaxies at z ~ 0.1. Finally, we investigate the metallicity via the N2 ratio, finding that z ~ 1 IR-selected sources are indistinguishable from the local mass-metallicity relation. We also find a strong correlation between dust attentuation and metallicity, with the most metal-rich IR-sources experiencing the largest levels of dust attenuation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا