ﻻ يوجد ملخص باللغة العربية
We experimentally investigate the mix-dimensional scattering occurring when the collisional partners live in different dimensions. We employ a binary mixture of ultracold atoms and exploit a species-selective 1D optical lattice to confine only one atomic species in 2D. By applying an external magnetic field in proximity of a Feshbach resonance, we adjust the free-space scattering length to observe a series of resonances in mixed dimensions. By monitoring 3-body inelastic losses, we measure the magnetic field values corresponding to the mix-dimensional scattering resonances and find a good agreement with the theoretical predictions based on simple energy considerations.
An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an
Since the discovery of topological insulators, many topological phases have been predicted and realized in a range of different systems, providing both fascinating physics and exciting opportunities for devices. And although new materials are being d
This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degen
Ultracold atomic gases have developed into prime systems for experimental studies of Efimov three-body physics and related few-body phenomena, which occur in the universal regime of resonant interactions. In the last few years, many important breakth
In three dimensions, non-interacting bosons undergo Bose-Einstein condensation at a critical temperature, $T_{c}$, which is slightly shifted by $Delta T_{mathrm{c}}$, if the particles interact. We calculate the excitation spectrum of interacting Bose