ﻻ يوجد ملخص باللغة العربية
We present Spitzer observations of a sample of 12 starless cores selected to have prominent 24 micron shadows. The Spitzer images show 8 and 24 micron shadows and in some cases 70 micron shadows; these spatially resolved absorption features trace the densest regions of the cores. We have carried out a 12CO (2-1) and 13CO (2-1) mapping survey of these cores with the Heinrich Hertz Telescope (HHT). We use the shadow features to derive optical depth maps. We derive molecular masses for the cores and the surrounding environment; we find that the 24 micron shadow masses are always greater than or equal to the molecular masses derived in the same region, a discrepancy likely caused by CO freeze--out onto dust grains. We combine this sample with two additional cores that we studied previously to bring the total sample to 14 cores. Using a simple Jeans mass criterion we find that ~ 2/3 of the cores selected to have prominent 24 micron shadows are collapsing or near collapse, a result that is supported by millimeter line observations. Of this subset at least half have indications of 70 micron shadows. All cores observed to produce absorption features at 70 micron are close to collapse. We conclude that 24 micron shadows, and even more so the 70 micron ones, are useful markers of cloud cores that are approaching collapse.
Young massive stars are usually found embedded in dense and massive molecular clumps and are known for being highly obscured and distant. During their formation process, deuteration is regarded as a potentially good indicator of the formation stage.
We have carried out observations of CCH and its two $^{13}$C isotopologues, $^{13}$CCH and C$^{13}$CH, in the 84 - 88 GHz band toward two starless cores, L1521B and L134N (L183), using the Nobeyama 45 m radio telescope. We have detected C$^{13}$CH wi
In order to understand the collapse dynamics of observed low-mass starless cores, we revise the conventional stability condition of hydrostatic Bonnor-Ebert spheres to take internal motions into account. Because observed starless cores resemble Bonno
The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be th
(Abridged) The initial physical conditions of high-mass stars and protoclusters remain poorly characterized. To this end we present the first targeted ALMA 1.3mm continuum and spectral line survey towards high-mass starless clump candidates, selectin