A heuristic greedy algorithm is developed for efficiently tiling spatially dense redshift surveys. In its first application to the Galaxy and Mass Assembly (GAMA) redshift survey we find it rapidly improves the spatial uniformity of our data, and naturally corrects for any spatial bias introduced by the 2dF multi object spectrograph. We make conservative predictions for the final state of the GAMA redshift survey after our final allocation of time, and can be confident that even if worse than typical weather affects our observations, all of our main survey requirements will be met.