ﻻ يوجد ملخص باللغة العربية
Due to its unique long-term coverage and high photometric precision, observations from the Kepler asteroseismic investigation will provide us with the possibility to sound stellar cycles in a number of solar-type stars with asteroseismology. By comparing these measurements with conventional ground-based chromospheric activity measurements we might be able to increase our understanding of the relation between the chromospheric changes and the changes in the eigenmodes. In parallel with the Kepler observations we have therefore started a programme at the Nordic Optical Telescope to observe and monitor chromospheric activity in the stars that are most likely to be selected for observations for the whole satellite mission. The ground-based observations presented here can be used both to guide the selection of the special Kepler targets and as the first step in a monitoring programme for stellar cycles. Also, the chromospheric activity measurements obtained from the ground-based observations can be compared with stellar parameters such as ages and rotation in order to improve stellar evolution models.
By combining ground-based spectrographic observations of variability in the chromospheric emission from Sun-like stars with the variability seen in their eigenmode frequencies, it is possible to relate the changes observed at the surfaces of these st
Although not designed as an astrometric instrument, Kepler is expected to produce astrometric results of a quality appropriate to support many of the astrophysical investigations enabled by its photometric results. On the basis of data collected duri
The current photometric datasets, that span decades, allow for studying long-term cycles on active stars. Complementary Ca H&K observations give information also on the cycles of normal solar-like stars, which have significantly smaller, and less eas
We present a catalogue of homogeneous determined chromospheric emission (CE), stellar atmospheric parameters and ages for 1,674 FGK main sequence (MS), subgiant, and giant stars. The analysis of CE level and variability is also performed. We measured
We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global os