ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolutionary Optimization of State Selective Field Ionization for Quantum Computing

339   0   0.0 ( 0 )
 نشر من قبل Martin Jones
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

State selective field ionization detection techniques in physics require a specific progression through a complicated atomic state space to optimize state selectivity and overall efficiency. For large principle quantum number n, the theoretical models become computationally intractable and any results are often rendered irrelevant by small deviations from ideal experimental conditions, for example external electromagnetic fields. Several different proposals for quantum information processing rely heavily upon the quality of these detectors. In this paper, we show a proof of principle that it is possible to optimize experimental field profiles in situ by running a genetic algorithm to control aspects of the experiment itself. A simple experiment produced novel results that are consistent with analyses of existing results.



قيم البحث

اقرأ أيضاً

157 - D. Beck , K. Blaum , G. Bollen 2008
Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectro meter ISOLTRAP, located at ISOLDE/CERN. The deviations from the ideal magnetic and electric fields are probed by measuring the cyclotron frequency and the reduced cyclotron frequency, respectively, of stored ions as a function of the time between the ejection of ions from the preparation trap and their capture in the precision trap, which influences the energy of their axial motion. The correction parameters are adjusted to minimize the frequency shifts.
The Jagiellonian-PET (J-PET) collaboration is developing a prototype TOF-PET detector based on long polymer scintillators. This novel approach exploits the excellent time properties of the plastic scintillators, which permit very precise time measure ments. The very fast, FPGA-based front-end electronics and the data acquisition system, as well as, low- and high-level reconstruction algorithms were specially developed to be used with the J-PET scanner. The TOF-PET data processing and reconstruction are time and resource demanding operations, especially in case of a large acceptance detector, which works in triggerless data acquisition mode. In this article, we discuss the parallel computing methods applied to optimize the data processing for the J-PET detector. We begin with general concepts of parallel computing and then we discuss several applications of those techniques in the J-PET data processing.
The need for larger mK cooling platforms is being driven by the desire to host ever growing numbers of cryogenic qubits in quantum computing platforms. As part of the Superconducting Quantum Materials and Systems Center at Fermilab funded through the Department of Energy under the National Quantum Initiative, we are developing a cryogenic platform capable of reaching millikelvin temperatures in an experimental volume of 2 meters diameter by approximately 1.5 meters in height. The platform is intended to host a three-dimensional qubit architecture based on superconducting radiofrequency accelerator cavity technologies. This paper describes the baseline design of the platform, along with the expected key performance parameters.
An improved formula is proposed for field ionization rate covering tunnel and barrier suppression regime. In contrast to the previous formula obtained recently in [I. Yu. Kostyukov and A. A. Golovanov, Phys. Rev. A 98, 043407 (2018)], it more accurat ely describes the transitional regime (between the tunnel regime and the barrier suppression regime). In the proposed approximation, the rate is mainly governed by two parameters: by the atom ionization potentials and by the external electric field, which makes it perfectly suitable for particle-in-cell (PIC) codes dedicated to modeling of intense laser-matter interactions.
The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV/A) the detector presen ts only three 0.5 $mu$m/cm$^2$ foils to the beam in addition to the detector gas. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a risetime of 60-70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate. Tests with an $alpha$ source establish the detector energy resolution as $sim$8 $%$ for an energy deposit of $sim$3.5 MeV. The energy resolution with beams of 2.5 and 4.0 MeV/A $^{39}$K ions and the dependence of the energy resolution on beam intensity is measured. At an instantaneous rate of 3 x 10$^5$ ions/s the energy resolution has degraded to 14% with a pileup of 12%. The good energy resolution of this detector at rates up to 3 x 10$^5$ ions/s makes it an effective tool in the characterization of low-energy radioactive beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا