ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Stability of Electromagnetically Induced Transparency in Atom-Assisted Optomechanical Cavities

108   0   0.0 ( 0 )
 نشر من قبل Yue Chang
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study how an oscillating mirror affects the electromagnetically induced transparency (EIT) of an atomic ensemble, which is confined in a gas cell placed inside a micro-cavity with an oscillating mirror in one end. The oscillating mirror is modeled as a quantum mechanical harmonic oscillator. The cavity field acts as a probe light of the EIT system and also produces a light pressure on the oscillating mirror. The back-action from the mirror to the cavity field results in several (from one to five) steady-states for this atom-assisted optomechanical cavity, producing a complex structure in its EIT. We calculate the susceptibility with respect to the few (from one to three) stable solutions found here for the equilibrium positions of the oscillating mirror. We find that the EIT of the atomic ensemble can be significantly changed by the oscillating mirror, and also that the various steady states of the mirror have different effects on the EIT.



قيم البحث

اقرأ أيضاً

We present experimental observation of electromagnetically induced transparency (EIT) on a single macroscopic artificial atom (superconducting quantum system) coupled to open 1D space of a transmission line. Unlike in a optical media with many atoms, the single atom EIT in 1D space is revealed in suppression of reflection of electromagnetic waves, rather than absorption. The observed almost 100 % modulation of the reflection and transmission of propagating microwaves demonstrates full controllability of individual artificial atoms and a possibility to manipulate the atomic states. The system can be used as a switchable mirror of microwaves and opens a good perspective for its applications in photonic quantum information processing and other fields.
We investigate a hybrid optomechanical system comprised of a mechanical oscillator and an atomic 3-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via Electromagnetically Induced Transparency (EIT) in t he atomic medium allows for strong coupling of the mechanical mirror oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the mirror motion, quantum state mapping and robust atom-mirror entanglement even for cavity widths larger than the mechanical oscillator frequency.
107 - Wei Zhao , Yan Zhang , Zhihai Wang 2021
The nonlocal emitter-waveguide coupling, which gives birth to the so called giant atom, represents a new paradigm in the field of quantum optics and waveguide QED. In this paper, we investigate the single-photon scattering in a one-dimensional wavegu ide on a two-level or three-level giant atom. Thanks to the natural interference induced by the back and forth photon transmitted/reflected at the atom-waveguide coupling points, the photon transmission can be dynamically controlled by the periodic phase modulation via adjusting the size of the giant atom. For the two-level giant-atom setup, we demonstrate the energy shift which is dependent on the atomic size. For the driven three-level giant-atom setup, it is of great interest that, the interference effect between different atomic transition paths, can lead to a complete transmission window, analogous to the electromagnetically induced transparency and beyond the two-photon resonance mechanism, and the width of the transmission valleys (reflection range) is tunable in terms of the atomic size. Our investigation will be beneficial to the photon or phonon control in quantum network based on mesoscopical or even macroscopical quantum nodes involving the giant atom.
147 - Jing Tang , Yuangang Deng , 2021
We present an experimental proposal to achieve a strong photon blockade by employing electromagnetically induced transparency (EIT) with single alkaline-earth-metal atom trapped in an optical cavity. In the presence of optical Stark shift, both secon d-order correlation function and cavity transmission exhibit asymmetric structures between the red and blue sidebands of the cavity. For a weak control field, the photon quantum statistics for the coherent transparency window (i.e. atomic quasi-dark state resonance) are insensitive to the Stark shift, which should also be immune to the spontaneous emission of the excited state by taking advantage of the intrinsic dark-state polariton of EIT. Interestingly, by exploiting the interplay between Stark shift and control field, the strong photon blockade at atomic quasi-dark state resonance has an optimal second-order correlation function $g^{(2)}(0)sim10^{-4}$ and a high cavity transmission simultaneously. The underlying physical mechanism is ascribed to the Stark shift enhanced spectrum anharmonicity and the EIT hosted strong nonlinearity with loss-insensitive atomic quasi-dark state resonance, which is essentially different from the conventional proposal with emerging Kerr nonlinearity in cavity-EIT. Our results reveal a new strategy to realize high-quality single photon sources, which could open up a new avenue for engineering nonclassical quantum states in cavity quantum electrodynamics.
148 - Hui Wang , Xiu Gu , Yu-xi Liu 2014
Some optomechanical systems can be transparent to a probe field when a strong driving field is applied. These systems can provide an optomechanical analogue of electromagnetically-induced transparency (EIT). We study the transmission of a probe field through a hybrid optomechanical system consisting of a cavity and a mechanical resonator with a two-level system (qubit). The qubit might be an intrinsic defect inside the mechanical resonator, a superconducting artificial atom, or another two-level system. The mechanical resonator is coupled to the cavity field via radiation pressure and to the qubit via the Jaynes-Cummings interaction. We find that the dressed two-level system and mechanical phonon can form two sets of three-level systems. Thus, there are two transparency windows in the discussed system. We interpret this effect as an optomechanical analog of two-color EIT (or double-EIT). We demonstrate how to switch between one and two EIT windows by changing the transition frequency of the qubit. We show that the absorption and dispersion of the system are mainly affected by the qubit-phonon coupling strength and the transition frequency of the qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا