ﻻ يوجد ملخص باللغة العربية
We derive the two-loop effective action for covariantly constant field strength of pure Yang-Mills theory in the presence of an infrared scale. The computation is done in the framework of the worldline formalism, based on a generalization procedure of constructing multiloop effective actions in terms of the bosonic worldline path integral. The two-loop beta-function is correctly reproduced. This is the first derivation in the worldline formulation, and serves as a nontrivial check on the consistency of the multiloop generalization procedure in the worldline formalism.
We discuss recent results on one-loop contributions to the effective action in {cal N}=4 supersymmetric Yang-Mills theory in four dimensions. Contributions with five external vector fields are compared with corresponding ones in open superstring theo
We study the gauge transformation of the recently computed one-loop four-point function of {cal N}=4 supersymmetric Yang-Mills theory with gauge group U(N). The contributions from nonplanar diagrams are not gauge invariant. We compute their gauge var
We review a recent progress in constructing low-energy effective action in N=4 super Yang-Mills theories. Using harmonic superspace approach we consider N=4 SYM in terms of unconstrained N=2 superfield and apply N=2 background field method to finding
The usual action of Yang-Mills theory is given by the quadratic form of curvatures of a principal G bundle defined on four dimensional manifolds. The non-linear generalization which is known as the Born-Infeld action has been given. In this paper we
We compute the classical effective action of color charges moving along worldlines by integrating out the Yang-Mills gauge field to next-to-leading order in the coupling. An adapted version of the Bern-Carrasco-Johansson (BCJ) double-copy constructio