ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth of fat slits and dispersionless KP hierarchy

151   0   0.0 ( 0 )
 نشر من قبل Anton Zabrodin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Zabrodin




اسأل ChatGPT حول البحث

A fat slit is a compact domain in the upper half plane bounded by a curve with endpoints on the real axis and a segment of the real axis between them. We consider conformal maps of the upper half plane to the exterior of a fat slit parameterized by harmonic moments of the latter and show that they obey an infinite set of Lax equations for the dispersionless KP hierarchy. Deformation of a fat slit under changing a particular harmonic moment can be treated as a growth process similar to the Laplacian growth of domains in the whole plane. This construction extends the well known link between solutions to the dispersionless KP hierarchy and conformal maps of slit domains in the upper half plane and provides a new, large family of solutions.



قيم البحث

اقرأ أيضاً

323 - V. Prokofev , A. Zabrodin 2019
We consider solutions of the matrix KP hierarchy that are trigonometric functions of the first hierarchical time $t_1=x$ and establish the correspondence with the spin generalization of the trigonometric Calogero-Moser system on the level of hierarch ies. Namely, the evolution of poles $x_i$ and matrix residues at the poles $a_i^{alpha}b_i^{beta}$ of the solutions with respect to the $k$-th hierarchical time of the matrix KP hierarchy is shown to be given by the Hamiltonian flow with the Hamiltonian which is a linear combination of the first $k$ higher Hamiltonians of the spin trigonometric Calogero-Moser system with coordinates $x_i$ and with spin degrees of freedom $a_i^{alpha}, , b_i^{beta}$. By considering evolution of poles according to the discrete time matrix KP hierarchy we also introduce the integrable discrete time version of the trigonometric spin Calogero-Moser system.
104 - Zhiyuan Wang , Jian Zhou 2021
In this work we study the tau-function $Z^{1D}$ of the KP hierarchy specified by the topological 1D gravity. As an application, we present two types of algorithms to compute the orbifold Euler characteristics of $overline{mathcal M}_{g,n}$. The first is to use (fat or thin) topological recursion formulas emerging from the Virasoro constraints for $Z^{1D}$; and the second is to use a formula for the connected $n$-point functions of a KP tau-function in terms of its affine coordinates on the Sato Grassmannian. This is a sequel to an earlier work.
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear $q$-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of $q$-deformation ($q$-effects) in single $q$-soliton from the simplest $tau$ function of the $q$-KP hierarchy and in multi-$q$-soliton from one-component $q$-cKP hierarchy, and their dependence of $x$ and $q$, were also presented. Finally, we observe that $q$-soliton tends to the usual soliton of the KP equation when $xto 0$ and $qto 1$, simultaneously.
Complete description of the singular sectors of the 1-layer Benney system (classical long wave equation) and dToda system is presented. Associated Euler-Poisson-Darboux equations E(1/2,1/2) and E(-1/2,-1/2) are the main tool in the analysis. A comple te list of solutions of the 1-layer Benney system depending on two parameters and belonging to the singular sector is given. Relation between Euler-Poisson-Darboux equations E(a,a) with opposite sign of a is discussed.
Based on the Chen--Moller--Sauvaget formula, we apply the theory of integrable systems to derive three equations for the generating series of the Masur--Veech volumes ${rm Vol} , mathcal{Q}_{g,n}$ associated with the principal strata of the moduli sp aces of quadratic differentials, and propose refinements of the conjectural formulas given in [12,4] for the large genus asymptotics of ${rm Vol} , mathcal{Q}_{g,n}$ and of the associated area Siegel--Veech constants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا