ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Satellite Observations of Cygnus X-1 to Study the Focused Wind and Absorption Dips

184   0   0.0 ( 0 )
 نشر من قبل Manfred Hanke
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-mass X-ray binary systems are powered by the stellar wind of their donor stars. The X-ray state of Cygnus X-1 is correlated with the properties of the wind which defines the environment of mass accretion. Chandra-HETGS observations close to orbital phase 0 allow for an analysis of the photoionzed stellar wind at high resolution, but because of the strong variability due to soft X-ray absorption dips, simultaneous multi-satellite observations are required to track and understand the continuum, too. Besides an earlier joint Chandra and RXTE observation, we present first results from a recent campaign which represents the best broad-band spectrum of Cyg X-1 ever achieved: On 2008 April 18/19 we observed this source with XMM-Newton, Chandra, Suzaku, RXTE, INTEGRAL, Swift, and AGILE in X- and gamma-rays, as well as with VLA in the radio. After superior conjunction of the black hole, we detect soft X-ray absorption dips likely due to clumps in the focused wind covering >95 % of the X-ray source, with column densities likely to be of several 10^23 cm^-2, which also affect photon energies above 20 keV via Compton scattering.



قيم البحث

اقرأ أيضاً

70 - J.M. Miller 2002
We have analyzed a Chandra HETGS spectrum of the Galactic black hole Cygnus X-1, obtained at a source flux which is approximately twice that commonly observed in its persistent low-intensity, spectrally-hard state. We find a myriad of absorption line s in the spectrum, including Ly-alpha lines and helium-like resonance lines from Ne, Na, Mg, and Si. We calculate a flux-weighted mean red-shift of ~100 km/s and a flux-weighted mean velocity width of 800 km/s (FWHM) for lines from these elements. We also detect a number of transitions from Fe XVIII-XXIV and Ni XIX-XX in absorption; however, the identification of these lines is less certain and a greater range of shifts and breadth is measured. Our observation occurred at a binary phase of phi = 0.76; the lines observed are consistent with absorption in an ionized region of the supergiant O9.7 Iab companion wind. The spectrum is extremely complicated in that a range of temperatures and densities are implied. Prior Chandra HETGS spectra of Cygnus X-1 were obtained in a similar transition state (at phi = 0.93) and in the low/hard state (at phi= 0.84). Considered together, these spectra provide evidence for a companion wind that is focused as it flows onto the black hole primary in this system.
We improve the method proposed by Yao emph{et al} (2003) to resolve the X-ray dust scattering halos of point sources. Using this method we re-analyze the Cygnus X-1 data observed with {it Chandra} (ObsID 1511) and derive the halo radial profile in di fferent energy bands and the fractional halo intensity (FHI) as $I(E)=0.402times E_{{rm keV}}^{-2}$. We also apply the method to the Cygnus X-3 data ({it Chandra} ObsID 425) and derive the halo radial profile from the first order data with the {it Chandra} ACIS+HETG. It is found that the halo radial profile could be fit by the halo model MRN (Mathis, Rumpl $&$ Nordsieck, 1977) and WD01 (Weingartner $&$ Draine, 2001); the dust clouds should be located at between 1/2 to 1 of the distance to Cygnus X-1 and between 1/6 to 3/4 (from MRN model) or 1/6 to 2/3 (from WD01 model) of the distance to Cygnus X-3, respectively.
Context: Cygnus X-1 is a black hole X-ray binary system in which the black hole captures and accretes gas from the strong stellar wind emitted by its supergiant O9.7 companion star. The irradiation of the supergiant star essentially determines the fl ow properties of the stellar wind and the X-ray luminosity from the system. The results of three-dimensional hydrodynamical simulations of wind-fed X-ray binary systems reported in recent work reveal that the ionizing feedback of the X-ray irradiation leads to the existence of two stable states with either a soft or a hard spectrum. Aims: We discuss the observed radiation of Cygnus X-1 in the soft and hard state in the context of mass flow in the corona and disk, as predicted by the recent application of a condensation model. Methods: The rates of gas condensation from the corona to the disk for Cygnus X-1 are determined, and the spectra of the hard and soft radiation are computed. The theoretical results are compared with the MAXI observations of Cygnus X-1 from 2009 to 2018. In particular, we evaluate the hardness-intensity diagrams (HIDs) for its ten episodes of soft and hard states which show that Cygnus X-1 is distinct in its spectral changes as compared to those found in the HIDs of low-mass X-ray binaries. Results: The theoretically derived values of photon counts and hardness are in approximate agreement with the observed data in the HID. However, the scatter in the diagram is not reproduced. Improved agreement could result from variations in the viscosity associated with clumping in the stellar wind and corresponding changes of the magnetic fields in the disk. The observed dipping events in the hard state may also contribute to the scatter and to a harder spectrum than predicted by the model.
140 - Y.J. Lei , F.J. Lu , J.L. Qu 2007
We present X-ray spectral analyses of low mass X-ray binary Cir X-1 during X-ray dips, using the Rossi X-ray Timing Explorer (RXTE) data. Each dip was divided into several segments, and the spectrum of each segment was fitted with a three-component b lackbody model, in which two components are affected by partial covering and the third one is unaffected. A Gaussian emission line is also included in the spectral model to represent the Fe Ka line at ~ 6.4 keV. The fitted temperatures of the two partially covered components are about 2 keV and 1 keV, while the uncovered component has a temperature of ~ 0.5-0.6 keV. The equivalent blackbody emission radius of the hottest component is the smallest and that of the coolest component is the biggest. During dips, the fluxes of the two hot components are linearly correlated, while that of the third component doesnt show any significant variation. The Fe line flux remains constant within errors during the short dips. However, during the long dips the line flux changes significantly and is positively correlated with the fluxes of the two hot components. These results suggest: (1) the temperature of the X-ray emitting region decreases with radius, (2) the Fe Ka line emitting region is close to the hot continuum emitting region, and (3) the size of the Fe line emitting region is bigger than the size of the obscuring matters causing short dips but smaller than the sizes of those causing long dips.
We present an analysis of three Chandra High Energy Transmission Gratings observations of the black hole binary Cyg X-1/HDE 226868 at different orbital phases. The stellar wind that is powering the accretion in this system is characterized by tempera ture and density inhomogeneities including structures, or clumps, of colder, more dense material embedded in the photoionized gas. As these clumps pass our line of sight, absorption dips appear in the light curve. We characterize the properties of the clumps through spectral changes during various dip stages. Comparing the silicon and sulfur absorption line regions (1.6-2.7 keV $equiv$ 7.7-4.6 {AA}) in four levels of varying column depth reveals the presence of lower ionization stages, i.e., colder or denser material, in the deeper dip phases. The Doppler velocities of the lines are roughly consistent within each observation, varying with the respective orbital phase. This is consistent with the picture of a structure that consists of differently ionized material, in which shells of material facing the black hole shield the inner and back shells from the ionizing radiation. The variation of the Doppler velocities compared to a toy model of the stellar wind, however, does not allow us to pin down an exact location of the clump region in the system. This result, as well as the asymmetric shape of the observed lines, point at a picture of a complex wind structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا