The recently increasing explorations for cavity optomechanical coupling assisted by a single atom or an atomic ensemble have opened an experimentally accessible fashion to interface quantum optics and nano (micro) -mechanical systems. In this paper, we study in details such composite quantum dynamics of photon, phonon and atoms, specified by the triple coupling, which only exists in this triple hybrid system: The cavity QED system with a movable end mirror. We exactly diagonalize the Hamiltonian of the triple hybrid system under the parametric resonance condition. We find that, with the rotating-wave approximation, the hybrid system is modeled by a generalized spin-orbit coupling where the orbital angular momentum operator is defined through a Jordan-Schwinger realization with two bosonic modes, corresponding to the mirror oscillation and the single mode photon of the cavity. In the quasi-classical limit of very large angular momentum, this system will behave like a standard cavity-QED system described by the Jaynes-Cummings model as the angular momentum operators are transformed to bosonic operators of a single mode. We test this observation with an experimentally accessible system with the atom in the cavity with a moving mirror.