ﻻ يوجد ملخص باللغة العربية
Ultra high-energy cosmic rays (UHECRs) are believed to be protons accelerated in magnetized plasma outflows of extra-Galactic sources. The acceleration of protons to ~10^{20} eV requires a source power L>10^{47} erg/s. The absence of steady sources of sufficient power within the GZK horizon of 100 Mpc, implies that UHECR sources are transient. We show that UHECR flares should be accompanied by strong X-ray and gamma-ray emission, and that X-ray and gamma-ray surveys constrain flares which last less than a decade to satisfy at least one of the following conditions: (i) L>10^{50} erg/s; (ii) the power carried by accelerated electrons is lower by a factor >10^2 than the power carried by magnetic fields or by >10^3 than the power in accelerated protons; or (iii) the sources exist only at low redshifts, z<<1. The implausibility of requirements (ii) and (iii) argue in favor of transient sources with L>10^{50} erg/s.
We measure the correlation between sky coordinates of the Swift BAT catalogue of active galactic nuclei with the arrival directions of the highest energy cosmic rays detected by the Auger Observatory. The statistically complete, hard X-ray catalogue
In this paper, we suggest a new way to identify single bright sources of Ultra High Energy Cosmic Rays (UHECR) on the sky, on top of background. We look for doublets of events at the highest energies, E > 6 x 10^19 eV, and identify low energy tails,
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi
The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possib
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information