A unified description of i) classical phase transitions and their remnants in finite systems and ii) quantum phase transitions is presented. The ensuing discussion relies on the interplay between, on the one hand, the thermodynamic concepts of temperature and specific heat and on the other, the quantal ones of coupling strengths in the Hamiltonian. Our considerations are illustrated in an exactly solvable model of Plastino and Moszkowski [Il Nuovo Cimento {bf 47}, 470 (1978)].