ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular orientation entanglement and temporal Bell-type inequalities

270   0   0.0 ( 0 )
 نشر من قبل P\\'erola Milman
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We detail and extend the results of [Milman {it et al.}, Phys. Rev. Lett. {bf 99}, 130405 (2007)] on Bell-type inequalities based on correlations between measurements of continuous observables performed on trapped molecular systems. We show that for some observables with a continuous spectrum which is bounded, one is able to construct non-locality tests sharing common properties with those for two-level systems. The specific observable studied here is molecular spatial orientation, and it can be experimentally measured for single molecules, as required in our protocol. We also provide some useful general properties of the derived inequalities and study their robustness to noise. Finally, we detail possible experimental scenarii and analyze the role played by different experimental parameters.



قيم البحث

اقرأ أيضاً

D{u}r [Phys. Rev. Lett. {bf 87}, 230402 (2001)] constructed $N$-qubit bound entangled states which violate a Bell inequality for $Nge 8$, and his result was recently improved by showing that there exists an $N$-qubit bound entangled state violating t he Bell inequality if and only if $Nge 6$ [Phys. Rev. A {bf 79}, 032309 (2009)]. On the other hand, it has been also shown that the states which D{u}r considered violate Bell inequalities different from the inequality for $Nge 6$. In this paper, by employing different forms of Bell inequalities, in particular, a specific form of Bell inequalities with $M$ settings of the measuring apparatus for sufficiently large $M$, we prove that there exists an $N$-qubit bound entangled state violating the $M$-setting Bell inequality if and only if $Nge 4$.
Bell-type inequalities and violations thereof reveal the fundamental differences between standard probability theory and its quantum counterpart. In the course of previous investigations ultimate bounds on quantum mechanical violations have been foun d. For example, Tsirelsons bound constitutes a global upper limit for quantum violations of the Clauser-Horne-Shimony-Holt (CHSH) and the Clauser-Horne (CH) inequalities. Here we investigate a method for calculating the precise quantum bounds on arbitrary Bell-type inequalities by solving the eigenvalue problem for the operator associated with each Bell-type inequality. Thereby, we use the min-max principle to calculate the norm of these self-adjoint operators from the maximal eigenvalue yielding the upper bound for a particular set of measurement parameters. The eigenvectors corresponding to the maximal eigenvalues provide the quantum state for which a Bell-type inequality is maximally violated.
We demonstrate a novel approach of violating position dependent Bell inequalities by photons emitted via independent photon sources in free space. We trace this violation back to path entanglement created a posteriori by the selection of modes due to the process of detection.
Quantum entanglement plays a vital role in many quantum information and communication tasks. Entangled states of higher dimensional systems are of great interest due to the extended possibilities they provide. For example, they allow the realisation of new types of quantum information schemes that can offer higher information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems. Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher dimensional entangled systems are used. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalised to d-dimensional systems with up to d = 12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum (OAM), generated through spontaneous parametric down-conversion (SPDC), and manipulated using computer controlled holograms.
Entanglement, one of the most intriguing aspects of quantum mechanics, marks itself into different features of quantum states. For this reason different criteria can be used for verifying entanglement. In this paper we review some of the entanglement criteria casted for continuous variable states and link them to peculiar aspects of the original debate on the famous EPR paradox. Moreover, we give a handy expression for valuating Bell-type non-locality on Gaussian states. We also present the experimental measurement of a particular realization of the Bell operator over continuous variable entangled states produced by a sub-threshold type-II OPO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا